Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

На нашем литературном портале можно бесплатно читать книгу Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории, Грин Брайан-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории
Название: Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории
Дата добавления: 15 январь 2020
Количество просмотров: 304
Читать онлайн

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории читать книгу онлайн

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - читать бесплатно онлайн , автор Грин Брайан

Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы–Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.

Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому. Брайан Грин срывает завесу тайны с теории струн, чтобы представить миру 11-мерную Вселенную, в которой ткань пространства рвётся и восстанавливается, а вся материя порождена вибрациями микроскопических струн.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 67 68 69 70 71 72 73 74 75 ... 120 ВПЕРЕД
Перейти на страницу:

Судя по результатам многочисленных исследований, ответ зависит от того, сжимается ли всё пространственное измерение (как в примерах этой главы), или (с чем мы столкнёмся в главах 11 и 13) коллапсирует отдельный «кусок» пространства. Как считает большинство теоретиков, независимо от вида пространства существуетминимальный предел сжатия всего пространственного измерения, и механизм возникновения этого предела во многом схож с механизмом в случае циклических измерений. Обоснование существования предела является важной задачей дальнейших исследований ввиду её непосредственного влияния на многие аспекты теории струн, включая следствия для космологии.

Зеркальная симметрия

Создав общую теорию относительности, Эйнштейн связал физику тяготения с геометрией пространства-времени. На первый взгляд, теория струн укрепляет и расширяет связь между физикой и геометрией: свойства колеблющихся струн (например, массы и переносимые ими заряды) в значительной степени определяются свойствами свёрнутой компоненты пространства. Однако, как мы только что видели, квантовая геометрия, связывающая геометрические и физические стороны теории струн, обладает рядом удивительных свойств. В общей теории относительности, как и в «традиционной» геометрии, окружность радиуса Rотличается от окружности радиуса 1/ R, что кажется незыблемым и очевидным, а в теории струн эти окружности физически неразличимы. Этот факт подталкивает нас пойти дальше и задаться вопросом, не существует ли геометрических структур пространства, отличающихся друг от друга ещё сильнее (не только размером, но, возможно, и видом), но, тем не менее, физически неразличимых в теории струн?

В 1988 г. Ленс Диксон из Стэндфордского центра линейных ускорителей сделал важнейшее в этом отношении наблюдение, которое впоследствии было обобщено Вольфгангом Лерхе из ЦЕРНа, Вафой из Гарварда и Николасом Уорнером, работавшим в то время в Массачусетском технологическом институте. На основе эстетических соображений, основанных на понятии симметрии, эти физики выдвинули смелое предположение, что два различных многообразия Калаби–Яу, выбранные в качестве дополнительных измерений в теории струн, могут приводить к одинаковым физическим результатам.

Чтобы дать представление о том, как может оказаться справедливой подобная кажущаяся невероятной гипотеза, вспомним, что число отверстий в добавочных измерениях Калаби–Яу определяет число семейств, в которые группируются возбуждения струны. Эти отверстия аналогичны отверстиям тора или его обобщений с несколькими ручками (рис. 9.1). К несчастью, на двумерном рисунке, который можно воспроизвести на странице, нельзя продемонстрировать то, что отверстия в шестимерном пространстве Калаби–Яу могут иметь различные размерности. Хотя такие отверстия трудно вообразить, их можно описать на понятном математическом языке. Суть состоит в том, что число семейств частиц, возникающих при возбуждениях струны, зависит только от числа всех отверстий, а не от числа отверстий каждой конкретной размерности (вот почему мы не заботились о том, чтобы изобразить разнообразные отверстия в главе 9). Предположим теперь, что у двух пространств Калаби–Яу число отверстий разных размерностей различно, но суммарное число отверстий одинаково. Так как число отверстий различных размерностей не совпадает, два этих пространства различны. Но так как суммарное число отверстий одинаково, число семейств в каждой Вселенной одно и то же. Конечно, это говорит о совпадении лишь одного физического свойства. Эквивалентность всехфизических свойств — гораздо более сильное требование, но и совпадение одного свойства уже свидетельствует в пользу того, что гипотеза Диксона–Лерхе–Вафы–Уорнера может оказаться верной.

В конце 1987 г. я поступил на стажировку на физический факультет Гарвардского университета, где мне выделили кабинет по соседству с кабинетом Вафы. Так как тема моей диссертации была посвящена физическим и математическим свойствам свёрнутых измерений Калаби–Яу в теории струн, Вафа держал меня в курсе своих работ в этой области. Когда в конце 1988 г. он, стоя на пороге моего кабинета, сообщил о гипотезе, к которой они пришли совместно с Лерхе и Уорнером, я был весьма заинтересован, но отнёсся к ней скептически. Интерес объяснялся тем, что в случае, если гипотеза окажется верной, она может открыть новые просторы исследований в теории струн, а скепсис был следствием понимания того, что догадки и установленные свойства теории — далеко не одно и то же.

На протяжении следующих месяцев я часто думал об этой гипотезе, и, честно говоря, почти убедил себя в том, что она неверна. Но вскоре, к моему удивлению, казалось бы, совершенно не связанные исследования совместно с Роненом Плессером, который в то время был аспирантом в Гарварде, а теперь работает в Институте Вейцмана и университете Дьюка, полностью изменили моё отношение к гипотезе. Плессер и я заинтересовались методами построения путём математических преобразований новых доселе неизвестных многообразий Калаби–Яу из заданного многообразия Калаби–Яу. Особенно притягательным нам казался метод орбифолдов, предложенный в середине 1980-х гг. Диксоном, Джеффри Харви из Чикагского университета, Вафой и Виттеном. Грубо говоря, этот метод состоит в склеивании различных точек на исходном многообразии Калаби–Яу согласно математической схеме, гарантирующей, что при склеивании снова получится многообразие Калаби–Яу. Эта процедура иллюстрируется на рис. 10.4. Математические выкладки, стоящие за подобными манипуляциями, невообразимо сложны, и в этом причина того, что занимающимся струнами теоретикам удалось детально исследовать эту процедуру лишь применительно к простейшим многообразиям — многомерным обобщениям торов, изображённых на рис. 9.1. Однако мы с Плессером поняли, что ряд очень красивых утверждений Дорона Гепнера, работавшего тогда в Принстонском университете, может привести к мощной теоретической схеме, в рамках которой можно применить технику орбифолдов к сложным многообразиям Калаби–Яу, например, к изображённому на рис. 8.9.

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - pic_10.4.jpg

Рис. 10.4.Метод орбифолдов есть процедура построения нового многообразия Калаби–Яу путём склеивания различных точек на исходном многообразии

После нескольких месяцев напряжённой работы в этом направлении мы пришли к неожиданному выводу. Если склеивать определённые группы точек правильным образом, получающееся многообразие Калаби–Яу будет отличаться от исходного, но совершенно удивительным образом. Число отверстий нечётнойразмерности нового многообразия будет равно числу отверстий чётнойразмерности исходного, и наоборот. Это, в частности, означает, что полное число отверстий, а, следовательно, и число семейств частиц в двух многообразиях будут одинаковыми, хотя из-за чётно-нечётных замен вид многообразий и их фундаментальные геометрические свойства будут существенно разными. {92}

Воодушевлённые очевидной связью с догадкой Диксона–Лерхе–Вафы–Уорнера, Плессер и я углубились в изучение центрального вопроса: будут ли эти два различных многообразия с одинаковым числом семейств частиц согласованы по остальным физическим свойствам? Через пару месяцев кропотливого математического анализа, подбадриваемые моим бывшим научным руководителем Грэмом Россом из Оксфорда и Вафой, мы с Плессером пришли к утвердительному ответу. По математическим соображениям, связанным с чётно-нечётными заменами, мы назвали эти физически эквивалентные, но геометрически различные пространства Калаби–Яу зеркальными многообразиями. {93} Пространства зеркальных пар Калаби–Яу не являются в буквальном смысле зеркальными образами друг друга. Но при всём различии геометрических свойств, если эти пространства используются в качестве дополнительных измерений теории струн, они приводят к физически эквивалентным Вселенным.

1 ... 67 68 69 70 71 72 73 74 75 ... 120 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название