Необыкновенная жизнь обыкновенной капли
Необыкновенная жизнь обыкновенной капли читать книгу онлайн
Капля жидкости. Вот она сорвалась с кончика пипетки и летит вниз — какую форму она при этом принимает? Как происходит испарение неподвижной капли и капли, которая обдувается потоком воздуха? А как и почему вообще образуется капля? Ответы на эти простые, казалось бы, вопросы на самом деле не так просты. Капля всегда в движении, в динамике рождения и исчезновения: полет, колебание, распад, испарение и конденсация. Бесконечная цепь превращений, форм и размеров. Поэтому каплю можно назвать перекрестком, на котором сходятся интересы разных научных дисциплин — от гидродинамики до химии.
Для широкого круга читателей.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Течение в камере закручивания не сплошное, а полое, и мы уже видели через стеклянное дно форсунки столбик воздушного вихря. Поэтому струя на выходе из соплового отверстия превращается в кольцевую пелену, ограниченную двумя поверхностями гиперболоида толщиной несколько десятых миллиметра. При очень малых давлениях подачи (порядка десятой доли атмосферы), то есть малых скоростях истечения, капиллярные силы еще конкурируют с гидродинамическими и замыкают пелену в полую эллипсообразную форму, что соответствует так называемому режиму пузыря (рис. 9). Поверхностное натяжение силится вернуть жидкости каплеобразную форму шара — минимум поверхности при заданном объеме (известный принцип минимума поверхностной энергии для равновесной формы жидкости).
С ростом давления подачи пузырь размыкается, и течение становится обычным конусом распыливания, жидкая пелена постепенно укорачивается, сохраняя небольшой венчик у самого корня факела. В тонкой пелене секрет высокой дисперсности, мелкости капель.
Почему же во вращающейся жидкости появляется полость, воздушный вихрь, и что вообще там происходит? Центробежная форсунка — хороший повод приглядеться ближе к жидким и газовым потокам, кратко познакомиться с азбукой гидродинамики идеальной (без трения) несжимаемой жидкости. Нам станут тогда понятней события, происходящие в мире капель и струй.
Следить за пространственной картиной изменчивых жидких (и газообразных) сред удобно с помощью линий тока, проведенных касательно к скоростям в различных точках жидкости. Узор таких линий является как бы мгновенной фотографией всего происходящего на большом интервале потока. Этот метод часто более информативен, чем попытка следить за перемещением отдельных жидких частиц. Движение потока может быть установившимся, когда его картина в любом месте не меняется со временем, и неустановившимся, когда она изменчива.
Установившееся движение — это, например, река с постоянным течением, омывающая одну и ту же линию берегов, или течение в трубе при постоянном угле открытия крана. Неустановившееся — это море со сменой приливов и отливов, штилем и волнами или переменное истечение струйки из шприца под действием все ускоряющегося поршня. Оказывается, в установившемся движении линии тока совпадают с траекториями частиц.
Вращательное движение, или циркуляция, в жидкости может происходить не обязательно по кругу, а по любому контуру и имеет обобщенный характер. Оно — основа многих важных явлений, в том числе подъемной силы крыла. Проведем любой замкнутый контур в поле линий тока. Можно построить проекции скоростей частиц жидкости на касательные к контуру в каждой его точке — линия окажется оперенной стрелочками. Сумма (или, точнее, интеграл по контуру) произведений таких проекций на длины малых отрезков дуг по всем точкам называется циркуляцией по контуру; она имеет знак «+» или «—» в зависимости от направления вращения: по ходу или против хода часовой стрелки. В жидкости все частицы могут не вращаться в привычном смысле, а циркуляция будет существовать. Вращение здесь приобретает более общий кинематический смысл. Выделим в потоке элементарный «жидкий кубик» и проследим за его движением. Оно может складываться только из трёх составляющих: поступательного (перемещение параллельно себе), вращательного (поворота как твердого тела), деформационного, когда грани углов наклоняются одинаково, так что биссектрисы сохраняют свое положение. Поток, где отсутствует вращение, а «кубик» только перемещается и деформируется, называется безвихревым, или потенциальным. Если присутствуют все три движения — поток вихревой, а вихревое течение всегда несет в себе циркуляцию. В гидродинамике существует теорема У. Томсона: циркуляция в идеальной жидкости остается всегда постоянной; если ее в начале движения не было, она никогда и не появится, но, возникнув, сохраняется неизменной. В дальнейшем мы еще вспомним об этой теореме.
Выделим элементарную струйку жидкости, или «трубку тока». Ее поверхность образована траекториями жидких частиц. Струйку берут тонкой, почти одномерной, так что параметры изменяются лишь вдоль ее течения, а поперек они постоянны. Течет она в общем потоке, вместе с ним сужаясь, расширяясь, вращаясь, и меняет свои параметры: площадь поперечного сечения f , скорость w , давление Р. Ходом многих явлений в мире гидродинамики, включая и малую струйку тока в ее изменчивом течении, управляют основные законы сохранения, которые диктуют постоянство трех главных физических параметров: расхода вещества, вращения, энергии (о четвертом законе — законе сохранения импульсов, или количества движения, речь будет несколько позже).
Тут иной читатель, пусть еще не очень много знающий в нашей науке, но желающий полной ясности, пытливый, внимательный, дотошный (автор особенно расположен к такому), скажет: «Ну хорошо, мы договорились в самом начале, что жидкость условно принимается идеальной, то есть без трения, а почему ее назвали несжимаемой, ведь она течет, сужается, изгибается, принимает форму канала, камеры закручивания форсунки?» Здесь необходима точность определений: не следует смешивать любую деформацию со сжатием. Представьте себе опять-таки некий жидкий кубик в потоке. Поток непременно вытянет его в длинный столбик, то есть изменит его форму, но объем останется прежним. Это и есть несжимаемость, свойственная практически всем жидкостям при не очень больших давлениях (не выше сотен атмосфер). В газе эффект сжимаемости (изменение объема «кубика») начинает сказываться, лишь когда скорость потока приближается к звуковой. При меньших скоростях удельный вес и плотность в различных точках потока остаются близкими к постоянным.
Первый закон — закон сохранения расхода: количество жидкости, прошедшей через площадь f в секунду, то есть массовый расход, остается постоянным по всей трубке потока:
Уравнение (1) является гидродинамической формой закона сохранения вещества.
Частицы жидкости или газа ведут себя куда разумнее людской толпы, они не замедляются, не толкутся в узких проходах, а, наоборот, если канал сужается (f падает), жидкость протекает быстрее, при расширении тракта (f возрастает) скорость ее падает.
Второй закон — закон неизменности момента количества движения: произведение скорости вращения и на радиус r сохраняется постоянным от одной струйки жидкости к другой. Применительно к форсунке это условие запишется так:
где vвх — скорость жидкости на входе в форсунку (начальная скорость закрутки), R — радиус камеры закручивания.
Вращающаяся жидкость — это «антикарусель»: чем меньше радиус вращения, тем больше скорость.
Третий закон — это закон сохранения энергии единицы объема жидкости (уравнение Бернулли): в установившемся движении идеальной жидкости сумма потенциальной энергии единицы объема, то есть давления и кинетической энергии, обусловленной скоростью, сохраняется постоянной вдоль всей струйки тока, в нашем случае — от исходного давления Р0 в резервуаре (баллоне) до выхода из канала. Уравнение Бернулли, связывающее параметры струйки, текущей сквозь форсунку, в различных поперечных сечениях имеет вид: