-->

Избранные научные труды. Том 2

На нашем литературном портале можно бесплатно читать книгу Избранные научные труды. Том 2, Бор Нильс Хенрик Давид-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Избранные научные труды. Том 2
Название: Избранные научные труды. Том 2
Дата добавления: 16 январь 2020
Количество просмотров: 301
Читать онлайн

Избранные научные труды. Том 2 читать книгу онлайн

Избранные научные труды. Том 2 - читать бесплатно онлайн , автор Бор Нильс Хенрик Давид

Во втором томе помещены работы Нильса Бора, опубликованные после 1925 г. Они охватывают в основном вопросы квантовой механики, квантовой электродинамики и теории атомного ядра. Кроме того, в том вошёл ряд статей по общим вопросам современного естествознания, по истории физики и несколько очерков о выдающихся физиках — современниках Бора. В совокупности публикуемые работы в достаточно полной мере характеризуют научное творчество выдающегося датского учёного после создания квантовой механики.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 61 62 63 64 65 66 67 68 69 ... 213 ВПЕРЕД
Перейти на страницу:

Это обстоятельство фактически означает возникновение совершенно новой ситуации в физике в отношении анализа и синтеза опытных данных. Она заставляет нас заменить классический идеал причинности некоторым более общим принципом, называемым обычно «дополнительностью». Получаемые нами с помощью различных измерительных приборов сведения о поведении исследуемых объектов, кажущиеся несовместимыми, в действительности не могут быть непосредственно связаны друг с другом обычным образом; а должны рассматриваться как дополняющие друг друга. Таким образом, в частности, объясняется безуспешность всякой попытки последовательно проанализировать «индивидуальность» отдельного атомного процесса, которую, казалось бы, символизирует квант действия, с помощью разделения такого процесса на отдельные части. Это связано с тем, что если мы хотим зафиксировать непосредственным наблюдением какой-либо момент в ходе процесса, то нам необходимо для этого воспользоваться измерительным прибором, применение которого не может быть согласовано с закономерностями течения этого процесса. Между постулатом теории относительности и принципом дополнительности при всём их различии можно усмотреть определённую формальную аналогию. Она заключается в том, что подобно тому, как в теории относительности оказываются эквивалентными закономерности, имеющие различную форму в разных системах отсчёта вследствие конечности скорости света, так в принципе дополнительности закономерности, изучаемые с помощью различных измерительных приборов и кажущиеся взаимно противоречащими вследствие конечности кванта действия, оказываются логически совместимыми.

Чтобы дать по возможности ясную картину сложившейся в атомной физике ситуации, совершенно новой с точки зрения теории познания, мы хотели бы здесь прежде всего рассмотреть несколько подробнее такие измерения, целью которых является контроль за пространственно-временны́м ходом какого-либо физического процесса. Такой контроль в конечном счёте всегда сводится к установлению некоторого числа однозначных связей поведения объекта с масштабами и часами, определяющими используемую нами пространственно-временну́ю систему отсчёта. Мы лишь тогда можем говорить о самостоятельном, не зависимом от условий наблюдения поведении объекта исследования в пространстве и во времени, когда при описании всех условий, существенных для рассматриваемого процесса, можем полностью пренебречь взаимодействием объекта с измерительным прибором, которое неизбежно возникает при установлении упомянутых связей. Если же, как это имеет место в квантовой области, такое взаимодействие само оказывает большое влияние на ход изучаемого явления, ситуация полностью меняется, и мы, в частности, должны отказаться от характерной для классического описания связи между пространственно-временны́ми характеристиками события и всеобщими динамическими законами сохранения. Это вытекает из того, что использование масштабов и часов для установления системы отсчёта по определению исключает возможность учёта величин импульса и энергии, передаваемых измерительному прибору в ходе рассматриваемого явления. Точно так же и наоборот, квантовые законы, в формулировке которых существенно используются понятия импульса или энергии, могут быть проверены лишь в таких экспериментальных условиях, когда исключается строгий контроль за пространственно-временны́м поведением объекта.

Способ описания таких ситуаций, как известно, находит свое выражение в так называемой квантовой механике, в которой возможность непротиворечивого учёта новых закономерностей обеспечивается тем, что обычные кинематические и динамические понятия заменяются символами, подчиняющимися определённым правилам математических действий. В этом отношении между квантовой механикой и теорией относительности также имеется интересная формальная аналогия: в обоих случаях строго логический формализм, позволяющий продвинуться в новую область познания, стал возможным лишь на основе введения абстрактных алгебраических или геометрических понятий. В связи с часто дискутировавшимся вопросом о том, можно ли эти формализмы рассматривать как расширение возможностей нашего познания, следует, однако, иметь в виду, что как в теории относительности изображение пространства-времени в виде четырёхмерного многообразия, так и в квантовой механике представление кинематических и динамических величин с помощью некоммутативной алгебры всецело основываются на старом математическом приеме введения мнимых величин. В самом деле, фундаментальные константы скорости света и кванта действия входят в определение четвёртой координаты и соответственно в перестановочные соотношения канонически сопряженных величин лишь с множителем √-1.

Конечно, у меня нет намерения входить здесь в подробное обсуждение столь специальных вопросов; я хотел бы лишь подчеркнуть, что при этом логическая стройность может быть получена лишь за счёт решительного отказа от обычных требований, обусловленных наглядными соображениями. В связи с этим, возможно, будет уместно предостеречь от неправильного понимания известных соотношений неопределённости Гейзенберга, которые играют такую же важную роль в вопросе о непротиворечивости принципиально статистического способа описания квантовой механики, какую в теории относительности играют формулы преобразования Лоренца в разрешении возникающих там парадоксов. Это неправильное понимание легко может возникнуть, когда всё содержание соотношений неопределённости пытаются изложить фразой типа: «положение и импульс частицы не могут быть одновременно измерены с произвольной точностью». Такое высказывание наводит на мысль, что здесь всё дело в добровольном отказе от измерения одного из двух чётко определённых атрибутов объекта, и оставляет место для надежд на то, что в будущей, более полной теории оба этих атрибута будут приниматься в рассмотрение в соответствии с требованиями классической физики. Однако из предыдущего объяснения должно быть очевидно, что ситуация в атомной физике в целом лишает всякого смысла такие самостоятельные атрибуты, взятые из арсенала классической физики. Напротив, основная роль соотношений неопределённости состоит в том, что они выражают в количественной форме логическую непротиворечивость закономерностей, кажущихся несовместимыми друг с другом и обнаруживающихся при использовании двух различных измерительных приборов; при этом лишь один из приборов допускает оправданное применение понятия положения, и лишь для другого имеет однозначный смысл понятие импульса, определяемого на основе законов сохранения.

Итак, мы видим, что неудачи попыток каузального истолкования квантовых явлений непосредственно связаны с предположениями о применимости самых элементарных понятий, используемых для описания рассматриваемых явлений. В связи с этим неоднократно высказывались предположения, что решительная перестройка старой системы понятий, пригодной в повседневном опыте, могла бы обеспечить сохранение представлений классической причинности и в области атомной физики. Однако такой взгляд основан на недооценке существующего положения вещей. Уже само требование, чтобы обстоятельства опыта и результаты измерения могли быть сообщены кому угодно, означает, что мы можем говорить на языке обычных понятий, основанных на нашем опыте. Мы, в частности, не должны забывать, что понятие причинности лежит в основе объяснения результата каждого отдельного измерения. Точно так же и при сопоставлении различных результатов по самой природе вещей никогда не может идти речи о чётко определённом разрыве причинной цепи событий. Наш вынужденный отказ от представлений классической причинности в атомной физике вызван, если рассуждать абстрактно, лишь тем, что мы не можем говорить о самостоятельном поведении физического объекта вследствие неизбежного взаимодействия его с измерительным прибором. Это взаимодействие принципиально не может быть учтено, если прибор в соответствии с поставленной перед ним задачей позволяет однозначно применять понятия, необходимые для описания явления. В конечном счёте искусственный термин как «дополнительность», который не принадлежит к повседневным понятиям и которому поэтому невозможно придать наглядный смысл с помощью обычных представлений, служит лишь той цели, чтобы напоминать о совершенно новой теоретико-познавательной ситуации, имеющейся во всяком случае в физике (

1 ... 61 62 63 64 65 66 67 68 69 ... 213 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название