-->

Живой кристалл

На нашем литературном портале можно бесплатно читать книгу Живой кристалл, Гегузин Яков Евсеевич-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Живой кристалл
Название: Живой кристалл
Дата добавления: 16 январь 2020
Количество просмотров: 284
Читать онлайн

Живой кристалл читать книгу онлайн

Живой кристалл - читать бесплатно онлайн , автор Гегузин Яков Евсеевич

Замечательный учёный и не менее талантливый популяризатор науки Яков Евсеевич Гегузин в этой брошюре сумел совместить невозможное - легко и просто объяснить что происходит в кристаллах - ярких представителях "твёрдой" формы окружающей нас материи, и как можно изменять их свойства, влиять на прочность и жёсткость, увеличивать полезные качества - и всё это в интересной форме, когда приводимые математические и физические формулы не отталкивают неискушённого читателя, а наоборот в доступной форме показывают всё величие человеческой мысли и научного подхода, и именно из этих исследований родился тот технический и электронный прогресс, плодами которого мы сейчас пользуемся (начиная от компьютеров и кончая сотовым телефоном, полностью "построенными" на технологии "выращивания" специальных кристаллов!) Книга содержит научно-популярное изложение современных представлений о физических явлениях и процессах, которые происходят в реальных кристаллах и определяют их физические свойства и эксплуатационные характеристики. Рассказано о движении атомов, составляющих решетку, о характеристиках и свойствах различных дефектов строения реальных кристаллов, о том, как кристалл хранит воспоминания о своем прошлом, повлиявшем на его структуру. Используемые в книге формулы вполне доступны овладевшему лишь начальными сведениями из алгебры.

Книга рассчитана на всех лиц, интересующихся современным естествознанием.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 2 3 4 5 6 7 8 9 10 ... 45 ВПЕРЕД
Перейти на страницу:

Немного упростим модель кристалла. Пусть атомы, окружающие данный «одиночный» атом, колебаний не совершают, а лишь, взаимодействуя с колеблющимся, определяют силы притяжения и отталкивания, которые действуют на него в соответствии с потенциалом взаимодействия между ним и окружающими атомами. И еще больше упростим реальную ситуацию, допустив, что атом совершает колебания лишь вдоль определенной прямой, а не во всех трех направлениях в пространстве. В рамках такой модели естественно атом, колеблющийся в узле решетки, мысленно заменить грузиком, колеблющимся на пружинке: грузик — атом, пружинка — упругое окружение. К помощи пружинки мы недавно уже прибегали.

Не увели ли нас предположения и упрощения далеко в сторону от тех реальных условий, в которых колеблется реальный атом в узле реальной кристаллической решетки? Кажется, не увели. Пружинка удачно моделирует наличие силы притяжения (когда она растянута) и силы отталкивания (когда она сжата). Грузик хорошо моделирует атом, так как в нашей задаче, если силы заданы, от атома требуется лишь иметь определенную массу, а грузик ее имеет. А то, что в избранной модели колебания происходят вдоль прямой, существа дела практически не искажает, так как более сложное колебание можно представить в виде суммы прямолинейных, — этой возможностью мы уже пользовались, когда, объясняя открытие Дюлонга и Пти, предполагали, что каждый из атомов участвует в трех прямолинейных колебаниях.

Определим вначале амплитуду колебаний атома. Потенциальная энергия Wп колеблющегося грузика, очевидно, не должна зависеть от того, смещается он влево или вправо от своего среднего положения, когда пружина и не сжата, и не растянута. А это означает, что

Живой кристалл - _13.jpg

где φ — постоянная величина, характеризующая упругие свойства пружины. Эта величина определяет силу, действующую на грузик со стороны пружины: F = — φх.

При максимальном отклонении колеблющегося атома от положения равновесия, т. е. при отклонении на величину амплитуды колебаний А, как мы уже знаем, вся энергия атома будет запасена в виде потенциальной энергии. Это означает, что

φA2/ 2 = kT

и, следовательно,

A = (2kT / φ)1/2

Полученная формула неприятна тем, что в нее входит неизвестная нам величина φ. Впрочем, ее нетрудно связать с известными характеристиками кристалла. Для этого левую и правую части формулы, которая определяет силу F, поделим на а2, где а — межатомное расстояние:

F/а2 = -φ . x/а

Легко усмотреть, что F/a2 — напряжение, действующее на атом,х/а — относительное смещение атома. Если оно невелико, последняя формула просто является записью закона Гука, а отношение φ/а имеет смысл модуля упругости Е. Итак, φ = Еа , а амплитуда

A = (2kT/Ea)1/2T1/2

Из нашего расчета следует, что амплитуда колебаний атома с температурой возрастает по закону T1/2. У металлов, для которых Е ≈ 1012 дин/см2, а ≈ 3• 10-8 см, в области предплавильных температур амплитуда А ≈ 2.10-9 см и, следовательно, составляет несколько процентов от величины межатомного расстояния. Много это или мало? Конечно же, немного, если иметь в виду сохранение решетки как таковой, если заботиться о том, чтобы тепловые колебания не расшатали кристалл, лишив его порядка в расположении атомов. При найденной нами амплитуде колебаний атомов кристалл сохраняет свою индивидуальность, еще не теряет «черты кристалла».

Определим теперь период колебаний атома. Если иметь в виду лишь приближенную оценку, то сделать это совсем несложно. Когда вся тепловая энергия колеблющегося атома преобразована в его кинетическую энергию, атом движется с максимальной скоростью, которая следует из условия

Живой кристалл - _14.jpg

Мы сделали грубое предположение, сочтя, что на протяжении всего периода колебаний атом движется с максимальной скоростью. Как выясняется, оно привело нас к потере численного множителя . Точная формула выглядит так:

Живой кристалл - _15.jpg

Мы получили результат, противоречащий интуиции: кажется странным, что период колебаний атома в решетке практически не зависит от температуры, разве что лишь в меру очень слабой температурной зависимости модуля упругости. Здесь следует подчеркнуть: не при всех температурах, а лишь при высоких температурах, когда вообще справедливо все то, что рассказано в очерке. Так как масса атома

m ≈ 10-22 грамм, то τ0 = 10-13 - 10-12 с

Итак, мы оценили две фундаментальные характеристики движения атома в кристалле: амплитуду и период колебаний. Их значения свидетельствуют об очень активной жизнедеятельности атома: он за секунду, не меняя положения оседлости, совершает п = 1/τ0 = 1012 — 1013 колебаний, проходя при этом путь протяженностью L = па = (1012 — 1013)• 10-9 см = 103 — 104 см!

История закона Дюлонга и Пти — отличная иллюстрация к одной из общих закономерностей развития науки: в ее ткань входят не только завершенные «глыбы» правды, но и те «крупицы» знаний, которые оказываются лишь долей правды.

ТЕОРИИ ЭЙНШТЕЙНА И ДЕБАЯ 

Открытие Дюлонга и Пти оказалось первым этапом почти вековой истории выяснения природы теплоемкости кристалла. Два последующих этапа связаны с именами великих физиков XX века — Альберта Эйнштейна и Петера Дебая. Их достижения относятся к теории. Экспериментальным же изучением теплоемкости в XX веке занимались в великом множестве лабораторий.

Модель маятников, зарекомендовавшую себя при объяснении закона Дюлонга и Пти, Эйнштейн не отверг, предположение об их независимости сохранил, число маятников оставил тем же: 3N. В модель он внес, однако, принципиально важное уточнение: маятники не «классические», а «квантовые». Это значит вот что: в отличие от «классических», они могут менять свою энергию лишь определенными порциями, «квантами». Классическая закономерность «чем — тем», передающая непрерывность связи между величинами, в данном случае несостоятельна.

Кстати, о закономерности «чем — тем», которую мы назвали «классической». Речь идет о том, что различные величины, характеризующие свойства вещества и зависящие одна от другой, в классической, в смысле «не квантовой», физике связаны так, что любое сколь угодно малое изменение одной из величин влечет за собой малое изменение другой величины. Нет скачков, нет ступенек, а есть непрерывное изменение: «чем — тем».

Энергия квантового маятника (в нашем случае это атом, колеблющийся в узле кристаллической решетки) квантуется на порции, величина которых равна ∆W = hν, где h = 6,62• 10-27 эрг•с — так называемая постоянная Планка, а ν — частота, с которой маятник колеблется. Так как атомный маятник колеблется с огромной частотой ν ≈ 1013 с-1, то ∆W ≈ 6•10-14 эрг. Величина ∆W оказывается очень малой, она, однако, при комнатной температуре (Т= 300 К) близка к — полной энергии колеблющегося атома ( ≈ 4• 10-14 эрг), и поэтому квантовость поглощения энергии атомом не может не сказаться и на его «личных» характеристиках, и на характеристиках твердого тела, состоящего из совокупности атомов — квантовых маятников.

1 2 3 4 5 6 7 8 9 10 ... 45 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название