Капля
Капля читать книгу онлайн
Книга состоит из отдельных очерков о физических законах, управляющих поведением капли, об ученых, которым капля помогла решить ряд сложных и важных задач в различных областях науки.
Книга иллюстрирована кадрами скоростной киносъемки и будет интересна самому широкому кругу читателей.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Ученый последовательно развивал мысль: в строении твердых и жидких тел много общих черт и процесс плавления не бог весть какое революционное событие в жизни вещества, так как плотность при этом изменяется незначительно, незначительно меняется и расстояние между атомами, а следовательно, и силы, связывающие их. При плавлении катастрофически уменьшается вязкость вещества — жидкость течет даже при малых воздействиях на нее, а твердое тело при таких воздействиях зримо остается неизменным, сохраняя свою форму. В действительности, однако, и оно течет, но это происходит во много раз медленнее, чем в жидкости.
Такое различие свойств жидкости и твердого тела Френкель считал не принципиальным, а только количественным. В кругу этих идей у него и появился ответ на вопрос о том, каким образом твердые порошинки при высокой температуре самопроизвольно сближаются и соединяются в одно целое. Они просто сливаются, подобно тому как сливаются две соприкоснувшиеся жидкие капли. Такое слияние и в случае твердых крупинок, и в случае жидких капель оправданно и выгодно потому, что сопровождается уменьшением поверхности порошинок — капель. Вот, пожалуй, основная идея: порошинки сливаются, и этот процесс приводит к выигрышу энергии. Теперь нужен расчет скорости процесса слияния капель или крупинок. Он завершится формулой, затем эту формулу следует вручить экспериментатору, который выступит третейским судьей между теоретиком и явлением.
Профессор Френкель как-то писал о том, что хороший теоретик обычно рисует не точный портрет явления, а карикатуру на него. Это значит, что подобно карикатуристу, он отбрасывает не очень существенные детали явления и оставляет лишь наиболее характерные его особенности. Талантливый карикатурист нарисует несколько завитков на лбу, кончики пальцев, держащих сигару, узел галстука — и все уже знают, кого он изобразил. Перед физиком-теоретиком почти та же задача. Реальное явление, как правило, очень сложно и описать его абсолютно точно чаще всего просто немыслимо. И Френкель, великолепный теоретик, нарисовал «карикатуру» процесса: вместо реальных крупинок произвольной формы он примыслил две сферические крупинки, вместо реального контакта по какой-то сложной поверхности — контакт в одной точке. И еще одно упрощение он вынужден был сделать: решил описать лишь начальную стадию процесса, когда на образование контактного перешейка между двумя каплями расходуется так мало вещества, что радиусы сливающихся капель можно считать практически не- изменившимися. Он считал, что на этой стадии слияние сферических капель происходит под действием сил, которые приложены только к вогнутым участкам поверхности формирующегося перешейка, движутся только эти участки поверхности, а вся прочая поверхность сфер в процессе участия не принимает.
Теоретик сделал главное: предложил идею и определил условия, в которых проявляются наиболее существенные черты явления. После этого формула появилась без особого труда. Оказалось, что площадь круга, по которому соприкасаются сферические капли, равномерно увеличивается со временем: время увеличилось вдвое и площадь — вдвое, время — втрое и площадь — втрое.
Неизвестно, заботился ли Френкель лишь об удобствах теоретика, определяя черты «карикатуры», или думал и об экспериментаторе, но модель сливающихся сферических капель была экспериментаторами охотно взята «на вооружение». Они припекали друг к другу маленькие стеклянные бусинки, нагретые до высокой температуры. Подчеркнем слово «маленькие» — сферические бусинки имели диаметр не более долей миллиметра. С бусинками более крупными экспериментировать нельзя, так как они будут деформироваться под влиянием собственной тяжести, а этого модель Френкеля не предусматривает. Специально не подчеркивая этого, Френкель предполагал, что капли подвержены лишь силам, которые обусловлены наличием поверхностного натяжения, т. е. находятся в невесдмости.
Опыт ставился следующим образом: соприкасающиеся бусинки выдерживались при высокой температуре некоторое время, затем охлаждались. На охлажденных бусинках измерялась ширина контактного перешейка, а потом все повторялось сначала: нагревались, выдерживались, охлаждались, измерялись. В каждом таком цикле добывалась одна экспериментальная точка. По 5—10 точкам строилась зависимость; квадрата ширины контактного перешейка (эта величина пропорциональна площади контакта) от времени. Экспериментальные точки не совсем точно укладывались на прямую, но в общем, как и предсказывает формула Френкеля, прямая получалась.
Итак, как будто круг замкнулся. Экспериментатор подтвердил правоту теоретика, узнал в «карикатуре» истинную натуру. И все же, может быть, он увидел не все? Возможно, согласие теории и эксперимента иллюзорно, оно .не точное, а, как говорят, «в общих чертах»? Теоретику, определившему задачу, те допущения, которые он делает, решая ее, «карикатура» простительна, а от экспериментатора можно потребовать подлинную фотографию с деталями,. которые не обязательны в карикатуре.
Опыты с микроскопическими бусинками — не лучшим образом поставленные опыты. Во-первых, бусинки малы, и поэтому некоторое изменение их формы в процессе взаимного слияния обнаружить непросто. Во-вторых, они не абсолютно сферические. В-третьих, пусть не много, но сила тяжести все же искажает форму бусинок, размягченных температурой. В-четвертых, 5—10 точек, рассеянных вокруг прямой,— не стопроцентная гарантия выполнимости предсказаний теоретика.
Теперь уместно перейти к фильму о слиянии двух капель. Он назван «Слияние вязких сфер в невесомости». Чтобы избавиться от перечисленных упреков в неточности, опыт, который должен был быть заснят на кинопленку, мы поставили так.
Два одинаковых по весу бесформенных кусочка вязкого вещества, допустим смолы, следует поместить в жидкость, плотность которой в точности совпадает с плотностью смолы. Вскоре, если температура жидкости достаточна, бесформенные кусочки превратятся в идеальные сферы, как это было в опыте Плато. В этом случае не следует бояться, что сила тяжести исказит форму сфер, поскольку они находятся в невесомости. Это дает экспериментатору возможность изучать не микроскопические бусинки, а крупные сферы. Снимая этот фильм, мы экспериментировали со сферами диаметром 5 см. Разобщенные сферы . приводились в контакт, и все происходящее с ними снималось кинокамерой. Две пятисантиметровые сферы сливались в одну приблизительно за 1 мин. Так как скорость съемки 24 кадра в секунду, то весь процесс оказывался запечатленным на огромном количестве кадров — более тысячи. Для игрового фильма это число кадров ничтожно, а для экспериментатора 1000 кадров — это 1000 экспериментальных точек! По этим точкам можно построить надежную кривую, отражающую зависимость изучаемой характеристики от времени.
Слияние капель эпоксидной смолы в невесомости
Наблюдая за слиянием сфер в невесомости с помощью кинокамеры, можно получить истинный «портрет» явления и оценить интуицию и зоркость теоретика.
Кадры фильма свидетельствуют о том, что в основном Френкель был прав, но только в основном. Действительно, быстрее иных участков поверхности движется вогнутая область контактного перешейка, но движется не только она. Оказывается, что, стремясь поскорее слиться, сферы меняют свою форму и рядом с перешейком. Поэтому центры сфер сближаются быстрее, чем это следует из расчетов Френкеля. Поэтому и площадь контакта со временем изменяется по очень сложному закону, а закон, выведенный Френкелем, проглядывает сквозь последовательность огромного числа точек лишь как нечто усредненное, справедливое приближенно. На киноленте, кроме того, были запечатлены и более далекие стадии слияния сферических капель, которые описать с помощью формул чрезвычайно трудно. Начинает перемещаться вещество во всем объеме сферы, в каждой точке с разной скоростью и в разных направлениях, и оказывается практически невозможным усмотреть черты, пригодные для создания похожей «карикатуры».