Капля
Капля читать книгу онлайн
Книга состоит из отдельных очерков о физических законах, управляющих поведением капли, об ученых, которым капля помогла решить ряд сложных и важных задач в различных областях науки.
Книга иллюстрирована кадрами скоростной киносъемки и будет интересна самому широкому кругу читателей.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Об аналогии между атомным ядром и каплей жидкости, вернее, о том, в чем он усматривает основания для аналогии, Френкель говорил так просто и естественно, будто она не была угадана его чутьем, а заведомо очевидна любому студенту. Говорил доверительно, не низводя слушателя до положения школяра, которого известный ученый одаривает крупицами своих необозримых знаний, вынуждая себя при этом опуститься до школярского уровня. Он очень умело создавал иллюзию разговора «на равных» со слушателем, который чувствует себя вправе перебить лектора, усомниться в его правоте, выразить одобрение.
Силы притяжения, говорил он, которые удерживают протоны и нейтроны в ядре, велики и могут противостоять силам электрического отталкивания, действующим между протонами в ядре. И это несмотря на то, что расстояния между протонами ничтожно малы — около 10-13— 10 -12 см. Сравнив энергии различных ядер и их геометрические размеры, можно убедиться, что силы, удерживающие нейтроны и протоны в ядре, в одном существенном отношении сходны с обычными силами межмолекулярного взаимодействия в жидкостях, а именно в том, что эти силы «короткодействующие». Они обладают значительной величиной лишь на расстояниях, сравнимых с размерами частиц— протонов и нейтронов в ядре и молекул в обычной жидкости. Различия между ядерными силами и силами взаимодействия между молекулами в жидкости заключаются в том, что радиус действия у первых в сто тысяч раз меньше, чем у вторых, а энергия связи — в миллион раз меньше. Различие, разумеется, огромное, но только количественное, а не качественное, и аналогии оно не помеха.
Френкель обратил внимание на то, что объемы различных ядер оказываются пропорциональными их массе, т. е. атомному весу соответствующих элементов. А это означает, что ядерное вещество, как и обычная жидкость, имеет постоянную плотность, которая от размеров ядра не зависит. Вот теперь есть основания говорить о ядерной жидкости, о ядре — капле. Плотность этой жидкости, говорил лектор, можно вычислить, и она оказывается в биллионы раз больше плотности обычных жидкостей, поверхностное натяжение — в 1018 раз больше поверхностного натяжения воды.
Не многим дано увидеть черты сходства между веществами, характеристики которых различаются в такое число раз, а профессор Френкель увидел, и его интуиция не отступила перед числом с восемнадцатью нулями.
Аналогия — это значит не тождество, а аналогия, и где-то ей положен предел. И ядерная жидкость не тождественна обычной. Ядра, капли ядерной жидкости, в отличие от капель жидкости обыкновенной, имеют электри ческий заряд, связанный с входящими в их состав протонами. Вот это уже отличие принципиальное, а не количественное, и оно определяет одно своеобразное свойство ядер- капель, которым не обладают обычные капли, дождинки или росинки. Именно это отличие и кладет предел аналогии.
Представим себе в невесомости две капли: одну из обычной жидкости, вторую — из ядерной. Невесомость нам нужна только для того, чтобы силы тяжести не искажали их форму. Будем мысленно увеличивать объем этих капель. С первой из них, «обычной», это можно делать без всяких ограничений — ее форма будет оставаться сферической. Жидкость в капле будет подвержена лишь давлению всестороннего сжатия, которое обусловлено кривизной ее поверхности. А вот со второй каплей, ядерной, дело обстоит сложнее. Ее вещество электрически заряжено. Это значит, что полусферы, на которые капля может быть условно разделена, взаимно отталкиваются, подчиняясь закону Кулона, согласно которому силы отталкивания прямо пропорциональны произведению взаимодействующих зарядов и обратно пропорциональны квадрату расстояния между ними. Так как величина заряда каждой из ядерных полусфер пропорциональна их объему, т. е. кубу радиуса, а расстояние между ними — радиусу, то, очевидно, с увеличением объема капли силы отталкивания, которые пытаются исказить сферическую форму капли и в конечном счете разорвать ее, будут расти. Препятствует этому лапласовское давление, которое стремится придать капле сферическую форму. Это давление, однако, с увеличением капли убывает. Сколь бы малым оно ни было, в условиях невесомости его всегда будет достаточно для того, чтобы капля обычной жидкости оставалась сферической, а в случае заряженной капли с лапласовским давлением вступает в борьбу иное давление, электростатическое, искажающее сферическую форму капли. Итак, два давления. Одно с увеличением размера капли падает, а другое растет. И, следовательно, это другое в конце концов окажется победителем: под его влиянием капля деформируется и разорвется на две разлетающиеся маленькие капли.
Профессор Френкель об этом говорил так. Деление ядра капли на две дочерние капли осуществляется не сразу, а путем постепенного вытягивания, при котором оно сначала превращается в вытянутый эллипсоид, затем центральное сечение этого эллипсоида сужается, образуя шейку. Шейка постепенно утоньшается, пока, наконец, не разорвется, после чего процесс деления может считаться законченным. Разумеется, и вытягивание и последующий разрыв происходят в режиме колебаний ядра-капли, во время одного из периодов этих колебаний, когда изменение формы капли оказалось наиболее значительным.
На доске появились элементарные формулы — Френкель «оценивал» атомный вес того элемента, ядро которого должно потерять устойчивость и разделиться на два дочерних. Атомный вес такого элемента оказался близким 100. Оценка озадачивающая, так как если она верна, то все элементы, атомный вес которых больше 100 , должны были бы потерять право на существование, а в периодической системе элементов фигурируют более тяжелые элементы, вплоть до урана, атомный вес которого 238. Что- то, видимо, в оценке не учтено. Что же? Френкель уже говорил о том, что, превращаясь в две сферические дочерние капли-ядра, материнское ядро должно постепенно вытягиваться. Это значит, что поверхность, а с ней и поверхностная энергия должны увеличиваться. Следовательно, на пути к процессу деления природой поставлен барьер, который необходимо преодолеть. Величину этого барьера можно вычислить, и во время лекции профессор это сделал. Он показал, что по мере увеличения радиуса материнского ядра-капли этот барьер постепенно снижается и становится практически равным нулю для ядра урана. Вот почему все, что можно примыслить себе за ураном, не должно быть долго жизнеспособным, а менделеевская таблица «стабильных» элементов должна оканчиваться именно ураном.
Вернемся к водопроводному крану. Капелька, формирующаяся на его конце, подвержена действию силы тяжести, которая деформирует каплю. Действие ее подобно действию электростатических сил отталкивания между двумя половинками заряженного ядра. Таким образом, если усматривать аналогию между развалом ядра и отрывом капли от кончика водопроводного крана, надо примыслить себе, что в кране остается капелька, подобная той, которая от него оторвалась.
После лекции профессора Френкеля прошло более тридцати лет. Капельная модель ядра уточнена, улучшена, а глубокая аналогия, навеянная видом капли на кончике крана или, быть может, дождевой каплей, в науке осталась прочно. Эта аналогия помогла решить задачи общечеловеческой значимости.
Образ капли близок творчеству Френкеля, к каплям он обращался много раз в разные годы и по разным поводам.
О подпрыгнувшей капле
Вначале совсем очевидное утверждение: если в силу каких- либо обстоятельств капля приобрела несферическую форму, это означает, что ее поверхность увеличилась по сравнению с поверхностью сферы и, следовательно, увеличилась и ее поверхностная энергия. Или: если в силу каких-либо обстоятельств несферическая капля вдруг приобретает сферическую форму, вследствие уменьшения поверхности должна выделиться избыточная энергия.
Допустим, что нам удалось осуществить преобразование формы капли от несферической к сферической, удалось предоставить возможность избыточной поверхностной энергии освободиться, выделиться. Кстати, эта энергия может оказаться совсем немалой. Ее очень легко вычислить, если задаться объемом капли и ее начальной формой. Вот пример, который дальше нам пригодится. Крупная капля ртути весом 20 г на стеклянной пластинке имеет форму лепешки, близкую к форме цилиндра, радиус которого 1,2 см, а высота 0,35 см. Если эта капля превратится в сферу, то при этом освобождается энергия W = 1060 эрг.