Эволюция физики
Эволюция физики читать книгу онлайн
Книга Альберта Эйнштейна и Леопольда Инфельда знакомит читателя с развитием основных идей физики. В книге даётся «представление о вечной борьбе изобретательного человеческого разума за более полное понимание законов, управляющих физическими явлениями», в ней показано, как каждая последующая, уточнённая картина мира закономерно сменяет предыдущую. Книга отражает известную среди специалистов эйнштейновскую оценку задач современной физики и её основных тенденций развития, которые в конечном счёте ведут к созданию единой физической теории. Мастерское изложение делает книгу А. Эйнштейна и Л. Инфельда доступной и для неспециалистов. Книга переведена на многие языки мира, неоднократно переиздавалась и переиздаётся в различных странах.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Рис. 81
Возьмём теперь другой пример. Оба конца той же самой трубки закреплены. Если угодно, можно использовать скрипичную струну. Что происходит теперь, когда на одном конце резиновой трубки или струны создаётся волна? Волна, как и в предыдущем случае, начнёт своё путешествие, но она скоро отразится от другого конца трубки. Теперь мы имеем две волны: одну, созданную колебанием, и другую, созданную отражением; они движутся в противоположных направлениях и интерферируют друг с другом. Нетрудно было бы проследить интерференцию обеих волн и определить характер волны, образующейся из их сложения; она называется стоячей волной. Эти два слова — «стоячая» и «волна» — кажутся противоречащими друг другу, тем не менее их комбинация оправдывается результатом наложения обеих волн.
Простейшим примером стоячей волны является движение струны с двумя закреплёнными концами вверх и вниз, как показано на рис. 82. Это движение есть результат того, что одна волна накладывается на другую, когда обе они проходят в различных направлениях. Характерная черта этого движения состоит в том, что в покое остаются только две конечные точки. Они называются узлами. Волна, так сказать, устанавливается между двумя узлами, все точки струны одновременно достигают максимума и минимума своих отклонений.
Рис. 82
Но это только простейший вид стоячих волн. Существуют и другие. Например, стоячая волна может иметь и три узла — по одному на каждом конце и один в середине. В этом случае в покое всегда остаются три точки. Из рис. 83 видно, что здесь длина волны вдвое меньше длины волны в примере с двумя узлами. Аналогично стоячие волны могут иметь четыре (рис. 84), пять узлов и более. В каждом случае длина волны будет зависеть от числа узлов.
Рис. 83
Рис. 84
Это число может быть только целым и может изменяться только скачками. Предложение типа «Число узлов в стоячей волне равно 3,576» есть чистая бессмыслица. Таким образом, длина волны может изменяться только прерывно (дискретно). Здесь, в этой классической проблеме, мы узнаём знакомые черты квантовой теории. Стоячая волна, созданная скрипачом, фактически ещё более сложна, будучи смесью очень многих волн с двумя, тремя, четырьмя, пятью узлами и более, а стало быть, смесью различных длин волн.
Физика может разложить такую смесь на простые стоячие волны, из которых она составлена. Или, употребляя нашу прежнюю терминологию, мы можем сказать, что колеблющаяся струна имеет свой спектр, так же как и элемент, испускающий излучение. И, так же как и в случае спектра элемента, здесь разрешены лишь известные длины волн, все же другие запрещены.
Таким образом, мы открыли некоторое подобие между колебанием струны и атомом, испускающим излучение. Странно, как может существовать эта аналогия, но мы всё же сделаем из неё дальнейшее заключение и попробуем продолжить сравнение, раз уж мы начали его.
Атом каждого элемента состоит из элементарных частиц: из тяжёлых, составляющих ядро, и из лёгких — электронов. Такая система частиц ведёт себя подобно маленькому акустическому инструменту, в котором создаются стоячие волны.
Однако стоячая волна является результатом интерференции двух или более движущихся волн. Если в нашей аналогии есть некоторая доля правды, то распространяющейся волне должна соответствовать ещё более простая структура, чем структура атома. Что же имеет наиболее простую структуру? В нашем материальном мире ничто не может быть более простым, чем электрон, элементарная частица, на которую не действуют никакие силы, т. е. электрон, покоящийся или находящийся в прямолинейном и равномерном движении. Мы могли бы прибавить новое звено в цепи нашей аналогии: движущийся прямолинейно и равномерно электрон ↔ волна определённой длины. Это была новая и смелая идея де Бройля.
Раньше было показано, что имеются как явления, в которых свет обнаруживает свой волновой характер, так и явления, в которых свет обнаруживает свой корпускулярный характер. Уже привыкнув к мысли, что свет есть волна, мы, к своему удивлению, обнаружили, что в некоторых случаях, например в фотоэлектрическом эффекте, свет ведёт себя как поток фотонов. Для электронов мы имеем теперь как раз обратное положение. Мы приучили себя к мысли, что электроны — это частицы, элементарные кванты электричества и вещества. Были найдены их заряд и масса. Но если в идее де Бройля есть какая-либо правда, то должны быть такие явления, в которых вещество обнаруживает свой волновой характер. Этот вывод, полученный благодаря тому, что мы следовали акустической аналогии, кажется вначале странным и непонятным. Как может движущаяся корпускула иметь что-то общее с волной? Но такого рода трудности мы встречали в физике не раз. Те же проблемы мы встречали и в области световых явлений.
В создании физической теории существеннейшую роль играют фундаментальные идеи. Физические книги полны сложных математических формул. Но началом каждой физической теории являются мысли и идеи, а не формулы. Идеи должны позднее принять математическую форму количественной теории, сделать возможным сравнение с экспериментом. Это можно объяснить на примере той проблемы, с которой мы теперь имеем дело. Главная догадка состоит в том, что равномерно движущийся электрон будет вести себя в некоторых явлениях аналогично волне. Предположим, что электрон или поток электронов — при условии, что все они имеют одинаковую скорость, — движется равномерно. Масса, заряд и скорость каждого индивидуального электрона известны. Если мы хотим каким-нибудь образом связать понятие волны с равномерно движущимся электроном или электронами, то мы должны поставить следующий вопрос: какова длина волны? Это вопрос количественный, и, чтобы получить на него ответ, следует построить более или менее количественную теорию. Правда, это оказалось простым делом. Математическая простота работы де Бройля, дающей ответ на этот вопрос, чрезвычайно удивительна. В то время, когда была написана его работа, математический аппарат других физических теорий был сравнительно утончённым и сложным. Математические операции в задаче, касающейся волн вещества, чрезвычайно просты и элементарны, но её фундаментальные идеи простираются глубоко и далеко.
Раньше, в случае световых волн и фотонов, было показано, что каждое положение, сформулированное на волновом языке, можно перевести на язык фотонов, или световых корпускул. То же самое справедливо и для электронных волн. Корпускулярный язык для равномерно движущихся электронов уже известен. Но каждое положение, выраженное корпускулярным языком, можно перевести на волновой язык, как это и было в случае фотонов. Две идеи привели к формулировке правил перевода. Одна идея — это аналогия между световыми волнами и электронными, или между фотонами и электронами. Мы применяем один и тот же метод перевода как для вещества, так и для света. Другую идею даёт специальная теория относительности. Законы природы должны быть инвариантными относительно лоренцевых преобразований, а не классических. Обе эти идеи приводят к определению длины волны, соответствующей движущемуся электрону. Из теории следует, что электрон, движущийся, скажем, со скоростью 16000 км/с, имеет длину волны, которую легко можно подсчитать и которая, оказывается, лежит в той же области, что и длина волны рентгеновских лучей. Отсюда мы заключаем далее, что если можно обнаружить волновой характер вещества, то это можно сделать экспериментально таким же путём, каким обнаруживаются волновые свойства рентгеновских лучей.
Вообразим пучок электронов, движущихся равномерно с заданной скоростью, или, если употреблять волновую терминологию, однородную электронную волну и предположим, что она падает на очень тонкий кристалл, играющий роль дифракционной решётки.