-->

Эволюция физики

На нашем литературном портале можно бесплатно читать книгу Эволюция физики, Эйнштейн Альберт-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Эволюция физики
Название: Эволюция физики
Дата добавления: 16 январь 2020
Количество просмотров: 395
Читать онлайн

Эволюция физики читать книгу онлайн

Эволюция физики - читать бесплатно онлайн , автор Эйнштейн Альберт

Книга Альберта Эйнштейна и Леопольда Инфельда знакомит читателя с развитием основных идей физики. В книге даётся «представление о вечной борьбе изобретательного человеческого разума за более полное понимание законов, управляющих физическими явлениями», в ней показано, как каждая последующая, уточнённая картина мира закономерно сменяет предыдущую. Книга отражает известную среди специалистов эйнштейновскую оценку задач современной физики и её основных тенденций развития, которые в конечном счёте ведут к созданию единой физической теории. Мастерское изложение делает книгу А. Эйнштейна и Л. Инфельда доступной и для неспециалистов. Книга переведена на многие языки мира, неоднократно переиздавалась и переиздаётся в различных странах.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Эволюция физики - i_078.jpg

Рис. 78. Спектральные линии (Фотография А. Шенстона)

Всё только что сказанное можно перевести на язык фотонов. Линии соответствуют определённой длине волны или, другими словами, фотонам с определённой энергией. Следовательно, светящийся газ испускает фотоны, энергия которых является не какой угодно, а лишь характерной для данного вещества. Действительность опять ограничивает изобилие возможностей.

Атом данного элемента, скажем водорода, может испускать только фотоны с определённой энергией. Возможно испускание лишь квантов с определённой энергией, испускание же всех других квантов запрещено. Представим себе простоты ради, что некоторый элемент испускает только одну линию, т. е. фотоны с совершенно определённой энергией. Атом богаче энергией перед излучением и беднее после. Из принципа сохранения энергии следует, что уровень энергии атома выше перед излучением и ниже после и что разность между обоими уровнями должна быть равной энергии излучённого фотона. Таким образом, тот факт, что атом определённого элемента испускает излучение лишь одной длины волны, т. е. фотоны лишь определённой энергии, можно выразить ещё иначе: в атоме этого элемента возможны лишь два уровня энергии, и излучение фотона соответствует переходу атома с высшего уровня энергии на низший.

Но, как правило, в спектрах элементов оказывается больше одной линии. Излучённые фотоны соответствуют многим энергиям, а не только одной. Или, другими словами, мы должны предположить, что в атоме допустимы многие уровни энергии и что испускание фотона соответствует переходу атома с более высокого уровня энергии на более низкий. Но существенно то, что не каждый уровень энергии дозволен, так как в спектре элемента оказывается не любая длина волны, не любой фотон какой угодно энергии. Вместо того чтобы сказать, что спектру каждого атома принадлежат некоторые определённые линии, некоторые определённые длины волн, мы можем сказать, что каждый атом имеет некоторые определённые энергетические уровни и что испускание светового кванта связано с переходом атома от одного энергетического уровня к другому. Как правило, энергетические уровни не непрерывны, а дискретны. Мы снова видим, что действительность использует не все возможности.

Бор был первым, кто показал, почему именно эти, а не другие линии оказываются в спектрах. Его теория, сформулированная 25 лет назад, нарисовала картину строения атома, из которой, по крайней мере в простых случаях, можно рассчитать спектры элементов и сделать по виду не связанные скучные числа согласованными, осветив их теорией.

Теория Бора явилась промежуточной ступенью на пути к более глубокой и более общей теории, названной волновой, или квантовой, механикой. Мы хотим на этих последних страницах охарактеризовать принципиальные идеи этой теории. Прежде чем это сделать, мы должны ещё напомнить о теоретическом и экспериментальном результате более специального характера.

Наш видимый спектр начинается с фиолетового цвета, соответствующего определённой длине волны, и кончается красным цветом, который также соответствует определённой длине волны. Или, другими словами, энергия фотонов видимого спектра всегда заключена внутри пределов, образованных энергиями фотонов фиолетового и красного света. Это ограничение есть, конечно, только свойство человеческого глаза. Если разность между какими-либо энергетическими уровнями достаточно велика, то испускаться будет фотон ультрафиолетового света, давая линию за пределами видимого спектра. Её наличие нельзя обнаружить невооружённым глазом; необходимо применить фотографическую пластинку.

Рентгеновские лучи тоже состоят из фотонов гораздо большей энергии, чем энергия видимого света, или, другими словами, длина волны рентгеновских лучей гораздо меньше. Она в тысячи раз меньше, чем длина волны видимых лучей.

Но возможно ли определить экспериментально столь малую длину волны? Это довольно трудно было сделать даже для обычного света. Мы должны были иметь малые препятствия или малые отверстия. Два булавочных отверстия, дающих дифракцию обычного света, очень близко расположены друг к другу; они должны быть в тысячи раз меньше и в тысячи раз плотнее расположены друг к другу, чтобы дать дифракцию рентгеновских лучей.

Как в таком случае можем мы измерить длину волны этих лучей? Сама природа приходит нам на помощь.

Эволюция физики - i_079.jpg

Рис. 79

Кристалл есть конгломерат атомов, расположенных совершенно правильным образом на очень близких расстояниях друг от друга. Рис. 79 показывает простую модель структуры кристалла. Вместо мелких отверстий здесь имеются крайне малые препятствия, образованные атомами элемента, расположенными очень тесно друг к другу и в абсолютно правильном порядке. Расстояния между атомами, как это найдено теорией, изучающей структуры кристаллов, так малы, что можно было ожидать получения эффекта дифракции рентгеновских лучей. Эксперимент подтвердил, что и в самом деле возможно получить дифракцию рентгеновских лучей с помощью этих тесно упакованных препятствий, расположенных в исключительно правильной трёхмерной решётке, встречающейся в кристалле.

Предположим, что пучок рентгеновских лучей падает на кристалл, а затем, пройдя сквозь него, регистрируется на фотографической пластинке. На пластинке в таком случае обнаруживается дифракционная картина. Чтобы изучить спектры рентгеновских лучей, чтобы из дифракционной картины вывести определённые заключения о длине волны, применялись различные методы. То, что здесь мы рассказали в нескольких словах, заполнило бы целые тома, если бы были изложены все теоретические и экспериментальные подробности. На рис. 80 мы воспроизвели только одну дифракционную картину, полученную одним из разнообразных методов. Мы снова видим тёмные и светлые кольца, столь характерные для волновой теории. В центре виден след недифрагированного луча. Если бы между источником рентгеновских лучей и фотографической пластинкой не был помещён кристалл, то, кроме этого следа, на пластинке ничего не было бы видно. Из таких фотографий можно подсчитать длины волн рентгеновских спектров, а с другой стороны, если длина волны известна, можно сделать заключение о структуре кристалла.

Эволюция физики - i_080.jpg

Рис. 80. Дифракция рентгеновых лучей (Фотография Ластовьевского и Грегора)

Волны материи

Как истолковать тот факт, что в спектрах элементов оказываются лишь определённые характерные длины волн?

В физике часто случалось, что существенный успех был достигнут проведением последовательной аналогии между не связанными по виду явлениями. В этой книге мы часто видели, как идеи, созданные и развитые в одной ветви науки, были впоследствии успешно применены в другой.

Развитие механистических взглядов и теории поля даёт много примеров этого рода. Сравнение разрешённых проблем с проблемами неразрешёнными может подсказать новые идеи и пролить новый свет на наши трудности. Легко найти поверхностную аналогию, которая в действительности ничего не выражает. Но вскрыть некоторые общие существенные черты, скрытые под поверхностью внешних различий, создать на этой базе новую удачную теорию — это важная созидательная работа. Развитие так называемой волновой механики, которое началось с работ де Бройля и Шрёдингера около 15 лет тому назад, является типичным примером достижений успешной теории, полученной путём глубоких и удачных аналогий.

Наш исходный пункт — это классический пример, ничего общего не имеющий с современной физикой. Возьмём в руки конец очень длинной гибкой резиновой трубки или пружины и будем двигать его ритмично вверх и вниз так, чтобы конец колебался. Тогда, как мы видели из многих других примеров, колебанием создаётся волна, распространяющаяся по трубке с определённой скоростью (рис. 81). Если мы представим себе бесконечно длинную трубку, то группы волн, однажды отправленные, будут следовать в своём бесконечном путешествии без интерференции.

Перейти на страницу:
Комментариев (0)
название