Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории
Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории читать книгу онлайн
Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы–Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.
Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому. Брайан Грин срывает завесу тайны с теории струн, чтобы представить миру 11-мерную Вселенную, в которой ткань пространства рвётся и восстанавливается, а вся материя порождена вибрациями микроскопических струн.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Такая Вселенная была бы кошмаром для физика. Физики, как и большинство остальных людей, полагаются на стабильность мироздания: законы, которые истинны сегодня, были истинны вчера и останутся истинными завтра (даже если мы не настолько умны, чтобы понимать все эти законы). В конце концов, какой смысл следует вкладывать в слово «закон», если он может меняться столь незакономерно? Сказанное не означает, что Вселенная статична; Вселенная, несомненно, изменяется самым разнообразным образом от одного момента времени к другому. Скорее, это означает, что законы, управляющие подобной эволюцией, постоянны и неизменны. Возникает вопрос: действительно ли мы знаем, что это верно? На самом деле, не знаем. Однако наши успехи в описании многочисленных особенностей устройства мироздания, начиная от первого момента после Большого взрыва и по сегодняшний день, дают уверенность в том, что если законы природы и изменяются, то они должны делать это очень медленно. Простейшее предположение, согласующееся с тем, что нам известно на сегодняшний день, состоит в том, что законы природы неизменны.
Теперь представим себе Вселенную, в разных частях которой свои законы физики, и эти законы, как местные обычаи, изменяются непредсказуемым образом от места к месту и отчаянно сопротивляются любому внешнему влиянию. Путешествие в таком мире, подобно приключениям Гулливера, заставит вас столкнуться с огромным разнообразием непредвиденных ситуаций. Однако с точки зрения физика это опять будет кошмаром. Очень трудно, например, примириться с фактом, что законы, которые действуют в одной стране — или даже в одном штате, — могут не действовать в другом. Но попробуйте представить, что произойдёт, если таким же образом будут меняться законы природы. В таком мире эксперименты, проведённые в одном месте, не дадут никакой информации о физических законах, действующих в других местах. Физики должны будут снова и снова повторять свои эксперименты в разных местах, чтобы установить характер действующих там физических законов. К счастью, всё, что мы знаем на сегодняшний день, говорит о том, что повсеместно действуют одни и те же законы физики. Эксперименты, проводимые по всему миру, могут быть объяснены на основе одних и тех же физических принципов. Более того, наша способность объяснить многочисленные астрофизические наблюдения, относящиеся к самым удалённым уголкам Вселенной, используя один и тот же неизменный набор физических принципов, заставляет нас верить в то, что действительноповсюду правят одни и те же физические законы. Поскольку мы никогда не бывали на противоположном краю Вселенной, мы не можем исключить возможность того, что где-то физика имеет совершенно иной характер, но все известные нам данные заставляют отвергнуть такой вариант.
Опять же, сказанное не означает, что Вселенная выглядит одинаково или что детали её устройства одинаковы в разных местах. Космонавт, скачущий по Луне на «кузнечике» (палке с пружиной), способен проделать массу вещей, которые невозможно себе представить на Земле. Но мы понимаем, что это различие связано с тем, что Луна имеет гораздо меньшую массу, чем Земля; это вовсе не означает, что закон гравитации изменяется от одного места к другому. Ньютоновский или, точнее, эйнштейновский закон гравитации является одинаковым и для Земли, и для Луны. Различия в опыте космонавтов связаны с изменением обстановки, а не с изменением физических законов.
Физики называют эти два свойства физических законов, а именно то, что они не зависят от того, когда или где мы их применяем, симметриямиприроды. Используя этот термин, физики имеют в виду, что природа трактует каждый момент во времени и каждую точку в пространстве идентично, симметрично, гарантируя, что будут действовать одни и те же фундаментальные законы. Подобно их действию в живописи и в музыке, такие виды симметрии вызывают глубокое удовлетворение: они подчёркивают порядок и согласие в функционировании мироздания. Элегантность, с которой богатые, сложные и разнообразные явления вытекают из простого набора универсальных законов, составляет немалую часть того, что имеют в виду физики, используя слово «прекрасный».
В нашем обсуждении, посвящённом специальной и общей теории относительности, мы столкнулись и с другими видами симметрии в природе. Вспомним, что принцип относительности, который лежит в основе специальной теории относительности, гласит, что законы физики будут одинаковы для наблюдателей, движущихся равномерно относительно друг друга. Этот принцип представляет собой разновидность симметрии, поскольку он означает, что природа относится к наблюдателям совершенно одинаково, симметрично. Каждый такой наблюдатель имеет право считать, что он находится в состоянии покоя. Подчеркнём ещё раз, что это не означает идентичности картины, которую будут видеть разные наблюдатели; как мы показали ранее, их наблюдения могут существенно расходиться. Дело не в этом. Подобно различиям в ощущениях энтузиастов прыжков на палках с пружиной на Земле и на Луне, различия в наблюдениях отражают особенности обстановки, в которой проводились наблюдения, ведь наблюдатели находились в относительном движении. Но то, что они наблюдали, управлялось одними и теми же законами.
Открыв принцип эквивалентности, основу общей теории относительности, Эйнштейн значительно расширил этот тип симметрии. Он показал, что законы физики в действительности идентичны для всех наблюдателей, даже для тех, которые находятся в состоянии сложного ускоренного движения. Вспомним, что Эйнштейн придал этой идее законченный вид, осознав, что ускоряющийся наблюдатель имеет полное право считать, что он находится в состоянии покоя, утверждая, что сила, действующая на него, обусловлена гравитационным полем. После включения в данную систему гравитации все возможные точки зрения становятся абсолютно равноправными. Помимо несомненной эстетической привлекательности такой равноправной трактовки всех видов движения, эти принципы симметрии, как мы видели выше, играют ключевую роль в поразительных выводах о характере гравитации, к которым пришёл Эйнштейн.
Есть ли ещё принципы симметрии, имеющие дело с пространством, временем и движением, которым должны удовлетворять законы физики? Если вы основательно поразмыслите об этом, то сможете указать ещё один принцип. Законы физики не должны зависеть от того, под каким углом вы проводите свои наблюдения. Например, если вы проводите какой-то эксперимент и после этого решаете повернуть вашу установку и повторить опыт, должны действовать те же самые законы. Этот принцип известен под названием вращательной симметрии, он означает, что законы физики трактуют все возможные направлениякак равноправные. Данный принцип симметрии имеет такое же значение, как и рассмотренные выше.
Существуют ли какие-либо ещё принципы симметрии? Не пропустили ли мы какой-нибудь из них? Вы можете предложить калибровочные симметрии, связанные с негравитационными силами, обсуждавшиеся в главе 5. Да, это несомненные симметрии в природе, но они являются более абстрактными по своему характеру; в данный момент мы хотим сконцентрировать наше внимание на тех видах симметрии, которые имеют непосредственное отношение к пространству, времени или движению. Если добавить это условие, по всей вероятности, вам не удастся предложить чего-либо нового. На самом деле в 1967 г. физики Сидни Коулмен и Джеффри Мандула сумели доказать, что никакие другие виды симметрии, связанные с пространством, временем или движением, не могут сочетаться с принципами симметрии, рассмотренными выше, и приводить к теории, имеющей какое-либо отношение к нашему миру.
Однако впоследствии более тщательное изучение этой теоремы, основанное на догадках ряда физиков, позволило обнаружить одну небольшую лазейку: результат Коулмена–Мандулы не охватывает симметрии, связанные с понятием, известным как спин.
Спин
Элементарные частицы, например электрон, могут вращаться вокруг атомных ядер подобно тому, как Земля вращается вокруг Солнца. Однако может показаться, что в традиционной точечной модели электрона нет аналога вращению Земли вокруг своей оси. Когда объект вращается, точки, расположенные на оси вращения, подобно центральной точкефрисби-диска, остаются неподвижными. Но если какой-нибудь объект является действительно точечным, у него нет «других точек», которые не находились бы на оси вращения. В результате может показаться, что такого понятия, как вращение точечного объекта, попросту не существует. Много лет назад исследование этого вопроса привело к открытию ещё одного поразительного квантового эффекта.