-->

Бегство от удивлений

На нашем литературном портале можно бесплатно читать книгу Бегство от удивлений, Анфилов Глеб Борисович-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Бегство от удивлений
Название: Бегство от удивлений
Дата добавления: 15 январь 2020
Количество просмотров: 206
Читать онлайн

Бегство от удивлений читать книгу онлайн

Бегство от удивлений - читать бесплатно онлайн , автор Анфилов Глеб Борисович

Книга рассказывает о рождении и развитии механики как науки, искавшей и ищущей ответы на самые простые и глубокие вопросы об устройстве природы.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 43 44 45 46 47 48 49 50 51 ... 63 ВПЕРЕД
Перейти на страницу:

Затем я ставлю на поверхности произвольную точку С, не лежащую на прямой АВ, и пытаюсь провести через нее прямые линии, которые нигде не пересекутся с моей первоначальной прямой.

Я усердно работаю. Ползаю туда-сюда, тяну нитки, провожу линии. В конце концов построение закончено. И я прихожу к одному из трех выводов:

Через точку С проходит только одна прямая линия, не пересекающаяся с АВ.

Удается построить сколько угодно таких линий (прямейших, но не прямых).

Нет ни одной прямейшей линии, которая, проходя через С, не пересекалась бы с АВ.

В первом случае моя поверхность — наверняка плоскость. Во втором — седло или какой-нибудь граммофонный раструб. В третьем — сфера либо что-нибудь вроде яичной скорлупы.

Вот смотрите сами:

Бегство от удивлений - doc2fb_image_03000040.png

При взгляде «со стороны» лишь для плоскости оправдалось как будто название «прямая» в применении к кратчайшей линии. На непрямых же поверхностях кратчайшие расстояния отмерились по кривым. Вслед за геометрами я называю их геодезическими (сюда относятся, например, экватор и меридианы глобуса, а параллели не относятся: не по ним отмериваются на земном шаре кратчайшие расстояния).

Что такое метрика

Я все еще блин. Побывал на сфере и седле, теперь переведен на плоскость. Хлопочу о возврате высоты и объема, но пока безуспешно. И от нечего делать занимаюсь геометрией. Это тем более любопытно, что мне на плоскость прислали два отличных инструмента — транспортир и мерную рулетку. Могу измерять длины и углы (по-прежнему — мгновенно, то есть в рамках классической физики).

Отправной пункт моих рассуждений — тот самый постулат о единственности прямой, не пересекающейся с данной прямой, по которому без всяких доказательств устанавливается, что поверхность — плоскость. В давние времена великий греческий геометр Евклид вывел из этого постулата всю геометрию плоскости — планиметрию.

Бегство от удивлений - doc2fb_image_03000041.png

Следом за Евклидом я строю углы, треугольники, квадраты, делаю всевозможные отсчеты, доказываю теоремы. Постепенно я убеждаюсь, что на плоскости действует строгая система правил измерения расстояний. Геометры называют эти правила метрикой.

Метрические теоремы — не новинка для любого восьмиклассника. Главная из них — теорема Пифагора, знаменитые в поколениях школяров всех стран и наций «пифагоровы штаны». Теорема утверждает: в прямоугольном треугольнике сумма квадратов меньших сторон (катетов а и b) обязательно равна квадрату большей стороны (гипотенузы S):

S2 = а2 +b2

Я, блин, горжусь, что сумел процитировать эту формулу по памяти, не заглядывая в учебник.

Кроме теоремы Пифагора, предметом моей гордости служит доказательство еще одного важного утверждения из школьной программы: в любом треугольнике сумма углов строго равна двум прямым. Ни больше ни меньше. Надеюсь, и эту теорему вы не забыли.

Примеряем „пифагоровы штаны"

Один рассеянный ученик по ошибке принес на урок геометрии вместо тетради футбольный мяч. Пришлось ему на мяче чертить всевозможные чертежи. Но вышла незадача: углы треугольников никак не складывались в два прямых. Выходило больше. А когда задали задачку на теорему Пифагора, ученик-футболист аккуратно составил из геодезических линий прямоугольный треугольник, измерил стороны, сложил квадраты катетов — и получилось больше, чем квадрат гипотенузы! «Пифагоровы штаны» оказались велики для футбольного мяча.

Примечательный случай произошел также с одним бравым ковбоем. Он воспылал симпатией к геометрии, но вместо тетради делал построения на лошадином седле. Тут сумма углов треугольника получилась меньше двух прямых, сумма же квадратов катетов — меньше квадрата гипотенузы. На седло «пифагоровы штаны» не натянулись. Они для седла малы.

Почему же? Разве теорема Пифагора не везде справедлива? И теорема о сумме углов треугольника тоже не универсальна?

Да, это так. Метрические правила неодинаковы на поверхностях разной кривизны. Они ведь выводятся из первоначального постулата о пересечении геодезических линий. На сфере, на седле, на плоскости эти линии пересекаются по-разному — отсюда разные суммы углов треугольников и усложненные (геометры говорят — обобщенные) варианты теоремы Пифагора.

Разгадка поверхности

На плоскости — проще всего. Там все точно по Евклиду. А поэтому строгое соблюдение школьных теорем — верный признак плоскости. Какие треугольники ни строй, всегда сумма углов равна двум прямым.

Какие прямоугольные треугольники ни приставляй к расстоянию, всегда соблюдается равенство квадрата гипотенузы сумме квадратов катетов.

Жаль, что, будучи блином, я сразу не захватил с собой рулетку и транспортир. Имея их, я не возился бы с пересечением геодезических, когда определял, какова моя поверхность. Не ползал бы, не уставал. Начертил бы треугольник, посчитал бы сумму углов, вышло два прямых — значит, моя поверхность плоская. Или сделал бы проверку по теореме Пифагора. Совпала сумма квадратов катетов с квадратом гипотенузы — есть доказательство плоскости.

Будь моя поверхность неплоская, вышло бы как у геометра-футболиста и геометра-ковбоя. Сумма квадратов катетов больше квадрата гипотенузы («пифагоровы штаны» велики) — значит, я на шаре. Сумма квадратов катетов меньше квадрата гипотенузы («пифагоровы штаны» малы) — значит, я на седле. Аналогично с суммой углов треугольника. Больше она двух прямых — треугольник начерчен на сфере, меньше — на седле.

Надеюсь, сказанное до сих пор не внушило вам недоверия. Пока шли разговоры о поверхностях, ничуть не удивительно, что их кривизна связана с метрикой. Это — как резиновая игрушка «уйди-уйди». Вообразите, что тетрадная страничка с геометрическими чертежами тоже резиновая, раздуйте ее в пузырь, натяните на седло или бублик — размеры углов и длин на чертежах тотчас станут другими. Ничего странного [15].

Но через эти простые вещи мы с вами подходим к неизбежности труднейшего логического скачка — с кривой поверхности в кривое пространство. К определению его кривизны изнутри, без оценок «со стороны».

Глава 22. ВДОЛЬ ПРОСТРАНСТВА

От окна до киоска

Я уже не блин. Мне возвращена высота. Я покинул мир тесных, бесконечно тонких площадей, живу, как и вы, в объеме, в глубоком, раздольном пространстве. Хорошо! Есть где развернуться! Можно не только ползать, но и прыгать и летать. Это очень приятно.

Но мне не до развлечений. В бытность блином я привык беспрерывно исследовать кривизну своего мира, и теперь меня тянет заняться тем же в пространстве.

Прежде всего я намереваюсь придумать способ облачения пустоты в «пифагоровы штаны» и примерки к ней «треугольной шляпы».

Как это сделать?

Вот легонькая задачка из школьной стереометрии.

От моего окна (на пятом этаже) до газетного киоска на противоположной стороне улицы «напрямую» S метров. По тротуару от моего дома с метров, b — ширина улицы, а — высоты моего окна. Требуется найти S, не мешая уличному движению — не протягивая из окна к киоску туго натянутой веревки, а вычислив это расстояние через a, b и с.

Решение наипростейшее: считаем, что стена дома составляет прямой угол с поверхностью тротуара, что переход через улицу перпендикулярен к ней самой, пренебрегаем кривизной земной поверхности и дважды применяем теорему Пифагора. Так добываем формулу:

S2 = а2 + b2 + с2.

Вышло очень похоже на теорему Пифагора, но уже не для плоскости, а для пространства. Для кратчайшего расстояния S, прокладываемого «через пустоту».

1 ... 43 44 45 46 47 48 49 50 51 ... 63 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название