-->

Бегство от удивлений

На нашем литературном портале можно бесплатно читать книгу Бегство от удивлений, Анфилов Глеб Борисович-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Бегство от удивлений
Название: Бегство от удивлений
Дата добавления: 15 январь 2020
Количество просмотров: 206
Читать онлайн

Бегство от удивлений читать книгу онлайн

Бегство от удивлений - читать бесплатно онлайн , автор Анфилов Глеб Борисович

Книга рассказывает о рождении и развитии механики как науки, искавшей и ищущей ответы на самые простые и глубокие вопросы об устройстве природы.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 42 43 44 45 46 47 48 49 50 ... 63 ВПЕРЕД
Перейти на страницу:

А вот новое.

Выдвигается гипотеза: раз в локальных, местных явлениях тяготение, сведенное к инерции, изменяет пространство и время, то и в крупных масштабах, где сведение невозможно, должна тем не менее происходить какая-то деформация пространства и времени.

Гипотеза эта напрашивается сама собой. Ведь полное тяготение Земли складывается из сил тяготения, исходящих от ее маленьких частей. В каждой части пространство и время изменяются, значит, и во всех частях вместе — тоже.

Из сугубо локальных явлений извлечено, таким образом, заключение совершенно универсальное: наша планета всей своей массой деформирует пространство и время.

И Солнце, и любая звезда, и любая галактика.

Всякая масса вещества обязана обладать поразительной способностью — способностью искривлять мир.

Что же это такое — искривлять мир?

Дабы легче постичь это, еще раз сосредоточьтесь и следующие три главы прочтите с усиленным вниманием.

Глава 21. ВДОЛЬ ПОВЕРХНОСТИ

Кривые дрова

Геометрия — самая древняя в обширной семье математических наук. И чуть ли не самая мудрая. Учителя единодушно признают ее лучшим пробным камнем математических способностей — она очень глубока по мысли, изящна, безупречно стройна.

Юный Эйнштейн, когда ему в руки попалась тоненькая геометрическая книжечка, был восхищенно удивлен открывшимся волшебством логического творчества: шаг за шагом из простейших постулатов вырастала гармония лемм и теорем, все более запутанных, тонких, подчас неожиданных. Великий физик назвал эту книжечку в числе отправных пунктов своего марафонского бега от удивлений.

Да, геометрия достойна высших похвал. Может быть, даже поэм и од.

Жаль, что их, кажется, еще не успели сочинить.

Зато на геометрические темы придумано порядочно поговорок и пословиц. Есть даже анекдоты.

Мне почему-то страшно нравится тот, где некий машинист на паровозе кричит кочегару:

— Эй, кочегар, кидай в топку кривые дрова! Въезжаем на поворот!

Эти фразы радуют своим несказанным идиотизмом.

Между тем изощренный физик-теоретик сумеет дать им кое-какое разумное истолкование. Чтобы уяснить это, нам придется заглянуть в геометрические первоосновы. Заодно мы поймем, что такое кривизна пространства.

Ножницы, глобус, седло

Вот вопрос: «прямое» и «кривое» — как отличить одно от другого? И что такое вообще кривизна и прямизна?

Прямой хочется назвать линию, которая проложена по кратчайшему расстоянию между двумя точками, а кривой — ту, что обходит прямую. Не зря ведь говорят: «объехать по кривой». Поэтому понятие прямизны тесно связано с понятием расстояния.

Теперь поймите главное: никакое расстояние не существует само по себе. Оно всегда отмеривается по чему-то конкретному — по дороге, по тетрадной странице или горному склону, либо, скажем, по световому лучу или по веревке, туго натянутой в пустоте.

Геометры говорят абстрактно и обобщенно: расстояния отмериваются по линиям, по поверхностям, в пространстве. Физики, соглашаясь с геометрами, помнят, однако, что все эти геометрические термины отражают реальные свойства нашего мира.

Кроме того, физик вкладывает свое определенное содержание в слово «отмеривать». Он помнит, что любое измерение требует не только математической корректности. Необходимы еще соответствующие приборы— линейки и часы.

Да, именно часы — ведь никакое измерение нельзя даже мысленно исполнить мгновенно, это мы с вами хорошо уяснили в десятой главе, когда рассуждали о предельности скорости света и других особенностях эйнштейновского толкования природы.

Таким образом, определение расстояний, как и всякий измерительный процесс, — совершенно очевидное физическое исследование. Тут геометрия зримо оборачивается физикой, физикой пространственных движений.

Пока, впрочем, забудем о часах. Допустим, что мы умеем измерять длины мгновенно. Это разрешено в физике медленных по сравнению со светом движений, в физике Ньютона. И поставим первую простенькую задачку.

Пусть даны две точки А и В — концы разведенных и крепко свинченных ножниц. И пусть расстояние между ними нужно определить по поверхности. Сразу задаем вопрос: по какой поверхности?

Ну, сперва по шаровой.

Хорошо. Подставим под ножницы глобус. Кратчайшее расстояние на его сфере физик проведет вдоль нити, натянутой между A и В по шаровой поверхности. Оно отмеряется, очевидно, не прямой линией, а кривой — дугой большого круга.

Далее. Посадим наши точки на какую-нибудь седловидную поверхность. Расстояние, проложенное туго натянутой ниткой, будет пройдено по другой кривой линии — гиперболе.

Если же концы ножниц приложить к поверхности письменного стола, то расстояние между ними отмерится по линии, которую мы привыкли называть прямой.

Вот, кажется, добрались до прямизны. Срезав ножом седло или шар, получаем поверхности, в которых линии кратчайших расстояний — наикратчайшие. Так как будто?

Но можно ли быть абсолютно уверенным, что линия на столе абсолютно прямая? И что сам стол плоский?

Кажется, вопросы надуманные. Кажется, плоскость потому и плоскость, что она прямее всех поверхностей.

В действительности дело обстоит сложнее. Все зависит от пространства, в котором стоит наш стол. Само пространство, с точки зрения геометра, вправе быть искривленным. И в конечном счете именно от кривизны пространства зависят кратчайшие расстояния.

Я — блин

Для новичка это очень странные слова — «кривизна пространства». Чтобы привыкнуть к ним, ответим сначала на несколько риторических вопросов.

Как мы узнали, что глобус круглый?

Посмотрели на него со стороны, из окружающего пространства.

Как мы узнали, что классная доска прямая?

Взглянули на нее откуда-то сбоку, опять-таки из окружающего пространства.

А как узнать, прямое ли само пространство?

И на пространство «поглядеть сбоку»? Но это невозможно. Нельзя покинуть пространство, выйти из него, как из дома, чтобы полюбоваться на него издали. Как ни убегай из него, все равно останешься в нем же.

Выходит, нет способов определить, кривое пространство или прямое?

Попробуем все же поискать их. Попробуем исследовать пространство изнутри, не выходя из него. Но не сразу.

Я сперва расскажу, как решается аналогичная задача для поверхности: постараюсь узнать, какова поверхность, не глядя на нее «сбоку», а находясь непосредственно на ней.

Ради наглядности я готов «разбиться в лепешку». Буквально так.

Смотрите: я полностью теряю свой рост, объем, превращаюсь в бесконечно тонкий блин и оказываюсь либо на сфере, либо на седле, либо на плоскости — сам не знаю где.

В качестве этого поверхностного новосела я получаю от вас задание: не сходя с поверхности, определить, какова она.

Условия задания. Сперва — затрудняющие.

Допускается, что я — маленький блин, а поверхность большая, причем в сколь угодно малых участках она сколь угодно мало отличается от плоскости. Кроме того, я близорук, а потому могу обследовать, не сдвигаясь с места, только ближайшие участки поверхности. И вижу лишь то, что находится на ней.

А вот условия, облегчающие решение.

Ползать по поверхности мне разрешено, и сколь угодно далеко. Наконец, считается, что я разумный блин. Умею рассуждать и чертить геометрические фигуры.

Что же мне, блину, делать?

А вот что.

Пересечение параллельных

Я намечаю на поверхности две точки — А и В. Соединяю их туго натянутой, но не отделяющейся от поверхности ниткой. По этой нитке провожу линию. И называю ее прямой.

Основания для такого названия у меня есть: во- первых, линия идет по кратчайшему расстоянию между А и В, а во-вторых, из-за сугубой близорукости я вижу вокруг себя плоские участки поверхности. Это, естественно, наводит меня на предположение, что и вся она плоская.

1 ... 42 43 44 45 46 47 48 49 50 ... 63 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название