-->

Введение в электронику

На нашем литературном портале можно бесплатно читать книгу Введение в электронику, Гейтс Эрл Д.-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Введение в электронику
Название: Введение в электронику
Дата добавления: 16 январь 2020
Количество просмотров: 10 594
Читать онлайн

Введение в электронику читать книгу онлайн

Введение в электронику - читать бесплатно онлайн , автор Гейтс Эрл Д.

Книга известного американского специалиста в простой и доступной форме знакомит с основами современной электроники. Основная ее цель — теоретически подготовить будущих специалистов — электриков и электронщиков — к практической работе, поэтому кроме детального изложения принципов работы измерительных и полупроводниковых приборов, интегральных микросхем рассмотрены общие вопросы физики диэлектриков и полупроводников. Обсуждение общих принципов микроэлектроники, описание алгоритмов цифровой обработки информации сопровождается примерами практической реализации устройств цифровой обработки сигналов, описаны принципы действия и устройство компьютера. Книга снабжена большим количеством примеров, задач и упражнений, выполнение которых помогает пониманию и усвоению материала. Предназначена для учащихся старших курсов средних специальных учебных заведений радиотехнического профиля, а также будет полезна самостоятельно изучающим основы электроники.

 

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 42 43 44 45 46 47 48 49 50 ... 120 ВПЕРЕД
Перейти на страницу:

Дано:

f = 60 Гц; L = 10 Гн; С = 1 мкФ

Х =?

Решение: 

Хс = 1/2πfC 

Хс =1/(6,28)(60)(0,000001)

Хс =2654 Ом

XL = 2πfL

XL = (6,28)(60)(10)

XL = 3768 Ом

X = XL- XC = 3768–2654

X = 1114 Ом (индуктивное).

ПРИМЕР: Чему равно реактивное сопротивление цепи, содержащей конденсатор емкостью 1 мкФ, соединенный последовательно с индуктивностью 1 генри (рис. 17-2), работающей на частоте 60 герц?

Введение в электронику - _28.jpg_6

Рис. 17-2 

 Дано:

f = 60 Гц; L = 1 Гн; С = 1 мкФ

Х =?

Решение: 

Хс = 1/2πfC 

Хс = 1/(6,28)(60)(0,000001)

Хс =2654 Ом

XL = 2πfL

XL = (6,28)(60)(1)

XL = 376,8 Ом

X = XC — XL = 2654 — 376,8

X = 2277,2 Ом (емкостное).

Эти примеры иллюстрируют важный момент. Когда емкостное и индуктивное реактивные сопротивления соединены последовательно, меньшее значение всегда вычитается из большего. Получающееся в результате реактивное сопротивление характеризуется большим значением.

17-1. Вопросы

1. Каково фазовое соотношение между током и напряжением на конденсаторе?

2. Каково фазовое соотношение между током и напряжением на катушке индуктивности?

3. По какой формуле определяется полное реактивное сопротивление последовательной цепи, когда известны значения Хс и XL?

4. Какова величина полного реактивного сопротивления (X) последовательной цепи, содержащей Хс = 50 ом и XL = 20 ом? Укажите, является X емкостным или индуктивным.

17-2. ИМПЕДАНС

Реактивное сопротивление, как емкостное, так и индуктивное, противодействует протеканию тока в цепях переменного тока. Активное сопротивление также препятствует протеканию тока в цепи. Комбинированное противодействие реактивного и активного сопротивлений называется импедансом и обозначается символом Z.

И активное, и реактивное сопротивления измеряются в омах. Следовательно, кажется логичным сложить эти сопротивления для того, чтобы получить импеданс. Однако этого делать нельзя, поскольку активное и реактивное сопротивления — величины векторные. В цепях переменного тока, содержащих только активное сопротивление, ток и напряжение находятся в фазе. И ток, и напряжение достигают своих максимальных значений одновременно.

Как упоминалось ранее, в цепях переменного тока, содержащих только реактивные сопротивления, ток будет либо опережать, либо отставать от напряжения на 90 градусов. Следовательно, напряжение в чисто реактивной цепи будет отличаться по фазе на 90 градусов от напряжения в чисто резистивной цепи.

Когда цепь содержит и активное, и реактивное сопротивление, импеданс будет больше любого их них. Кроме того, ток в такой цепи будет не в фазе с напряжением. Сдвиг по фазе будет в пределах от нуля до 90 градусов.

Для того чтобы найти импеданс, используется векторная диаграмма — прямоугольный треугольник сопротивлений. Это может быть сделано потому, что ток через резистор находится в фазе с напряжением на нем, а ток через реактивную нагрузку сдвинут по фазе на 90 градусов относительно напряжения на ней. Они находятся под прямым углом друг к другу.

ПРИМЕР: Чему равен импеданс последовательно соединенных резистора сопротивлением 150 ом и индуктивного реактивного сопротивления 100 ом?

В качестве первого шага нарисуем основание треугольника, представляющее резистор 150 ом. Далее нарисуем линию под углом 90 градусов к основанию, представляющую индуктивное сопротивление 100 ом. После этого соединим концы линий, образуя гипотенузу треугольника. Гипотенуза представляет импеданс цепи (рис. 17-3).

Введение в электронику - _29.jpg_5

Рис. 17-3. Векторная диаграмма.

Теорема Пифагора утверждает:

с2 = а2 + Ь2,

где с — гипотенуза, а и b — катеты.

Графически это представлено на рис. 17-4.

Введение в электронику - _30.jpg_5

Рис. 17-4. Векторная диаграмма, показывающая связь активного сопротивления, реактивного индуктивного сопротивления и импеданса в последовательной цепи.

Если импеданс, активное и реактивное сопротивления заменить соответствующими символами, то формула будет выглядеть следующим образом:

Z2 = R2 + X2.

Вернемся к определению импеданса последовательной комбинации резистора 150 ом и индуктивного сопротивления 100 ом.

Дано:

R = 150 Ом; XL = 100 Ом.

Решение:

Z2 = R2 + X2

Z2 =(150)2 + (100)2 = 32500

Z = √(32500) = 180,28 Ом.

Если вместо индуктивного в цепи находится емкостное сопротивление, то линию, представляющую емкостное сопротивление, обычно рисуют направленной вниз. Это показывает, что оно действует в направлении противоположном индуктивному сопротивлению, которое рисуют направленным вверх.

В последовательной цепи с емкостным реактивным сопротивлением формула для вычисления импеданса будет выглядеть следующим образом:

Z2 = R2 + Х2С.

ПРИМЕР: Чему равен импеданс цепи, содержащей резистор сопротивлением 220 ом, соединенный последовательно с конденсатором, имеющим емкостное реактивное сопротивление 270 ом?

Дано:

R = 220 Ом; Xc = 270 Ом.

Решение:

Z2 = R2 + X2c

Z2 = (220)2 + (270)2 = 121300

Z = √(121300) = 348,28 Oм.

Z = 348,28 Ом.

Если последовательная цепь содержит индуктивное и емкостное реактивные сопротивления, а также активное сопротивление, необходимо найти полное реактивное сопротивление (X). Реактивное сопротивление может быть либо индуктивным, либо емкостным. Следовательно, может быть использована одна из следующих формул: 

Z2 = R2 + X2L;

Z2 = R2 + Х2с.

17-2. Вопросы

1. Как называется полное противодействие в цепи переменного тока?

2. Какая формула используется для вычисления величины полного противодействия в последовательной цепи?

3. Чему равно значение Z в последовательной цепи переменного тока, где Хс = 3 Ом, XL = 6 Ом, a R = 4 Ом?

1 ... 42 43 44 45 46 47 48 49 50 ... 120 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название