Чем мир держится?
Чем мир держится? читать книгу онлайн
В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.
В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Но это все-таки один из путей, открытых науке. А может быть, удастся найти физические процессы, которые надут гораздо больший КПД превращения света в волны тяготения?
Пока же ученые работают над использованием в гравитехнике уже известных процессов.
Сейчас появилось большое количество конкретных проектов гравитационных антенн на этой основе.
Л. П. Грищук и М. В. Сажин детально разработали проект излучателя, в котором колебания электромагнитного поля создают пучок гравитационных волн.
Казанские физики У. X. Копвиллем и В. Р. Нагибаров уже давно предложили идею создания своего рода гравитационного лазера, где должны складываться вместе излучения десяти секстильонов элементарных источников. К сожалению, идея пока недостаточно разработана даже в чисто теоретическом плане.
А. А. Соколов, Д. В. Гальцов и Ю. В. Грац предлагают использовать для генерации гравитационных волн движение электронов в плазме…
Новые типы механических приемников и излучателей предлагаются В. Б. Брагинским и В. Н. Руденко.
Словом, идей много. И если до их конкретного воплощения в жизнь достаточно далеко и стоить это будет большого труда, то зато перспективы здесь необъятны.
…Простым глазом в самую звездную ночь увидишь в небе лишь несколько тысяч светящихся точек. Телескопы резко умножили число звезд, то же сделали затем радиотелескопы. И все-таки эта открывающаяся нам бездна, что звезд полна, должна быть полна ими в еще большей степени. Задумаемся вот над каким фактом. Мы видим только те космические тела, что светятся своим или отраженным светом, те тела, что посылают нам электромагнитные волны. (Радиозвезды в конце концов излучают те же электромагнитные волны, только другой, не световой частоты.)
Ну, а как быть с теми небесными телами, что еще не зажглись или уже погасли? Для нас они не существуют. Мы словно бродим по ночному лесу, видя в нем только гнилушки да светлячков. Слишком сильное сравнение? Наверняка. Но мы действительно видим на небе лишь то, что светится. Это, конечно, не вина, наша, а беда.
Разумеется, по тончайшим деталям видимого движения звезд иногда удается узнать, не двойные ли они, может ли быть у такого-то светила планетная система. Тут помогает знание законов тяготения и небесной механики. Но отдельные солнца нашей Галактики разделяют такие чудовищные пространства, что ни Ньютон, ни Эйнштейн со всеми их законами не запретят существование в этих просторах темных звезд, не излучающих ни световых, ни радиоволн. Астрономы-теоретики даже рассчитали, какими могут быть эти таинственные звезды, предсказали их возможные массу, свойства, особенности; фантасты прикинули, как невидимые космические «не-светила» будут мешать межзвездным путешествиям, что за жизнь возникнет на их вечно ночной поверхности.
Впрочем, дело тут не в фантастах. Может быть, нынешний звездный глобус будет скоро выглядеть еще более наивно, чем доколумбовский земной глобус, обходившийся без трех частей света из шести возможных. Преображение звездного глобуса должна произвести гравитационная астрономия, которая, вероятно, когда-нибудь позволит разглядеть многие из звезд-невидимок.
Она же решит тем самым некоторые вселенские проблемы.
С 1933 года существует в астрономии «парадокс Цвикки», «парадокс скрытых масс». Суть его вот в чем. Масса каждой галактики связана с ее светимостью.
По тому, сколько света исходит от галактики (или скопления галактик), высчитывают, разумеется, примерно, ее массу. Но ту же самую массу можно определить и другим способом — по скоростям обращения звезд, расположенных на разных расстояниях от центра галактики. Последний метод должен быть более точным, поскольку на движение звезды в галактике влияет именно притяжение, масса остальных объектов этой большой звездной системы.
В первом случае учитываются только видимые объекты, во втором — все.
Разница в результатах, полученных первым и вторым методом, никак не может быть объяснена неточностью вычислений. Масса галактики (или группы галактик), определенная по движению звезд, может быть и в два, и в десять и в сто раз больше, чем масса, определенная по светимости.
Каких только гипотез не выдвигают для разрешения парадокса Цвикки! Пересматривают плотность межзвездного газа. Предлагают считать, что группы галактик очень быстро расширяются (и верно: при этом «парадокс скрытых масс» снимается).
Предполагают, что видимые части галактик на самом деле лишь центральные их области, окруженные далеко за принятыми ныне их пределами межзвездным газом, масса которого и объясняет эффект. И т. д. и т. п. Однако достаточно давно выдвигалась идея о том, что скрытые массы составлены просто-напросто несветящимися звездами, возможно, гораздо меньшими, чем Солнце.
Последняя гипотеза, можно сказать, напрашивается. И все-таки особой популярностью она не пользуется. Причина проста — ее нельзя проверить. А наша наука слишком прочно, пожалуй, покоится на фундаментальных принципах тех же Галилея и Ньютона да еще Френсиса Бэкона, требующих эксперимента, проверки. Ну как исследовать проблему, которую нельзя решить ни наблюдением, ни расчетом? Ученые в аналогичных случаях нередко предпочитают изучать менее вероятные предположения, если есть зато возможность их проверить.
Вот тут гравитационная астрономия тоже скажет свое веское слово. Конечно, не сразу. Сначала ее техника, вероятно, позволит исследовать только мощные процессы взрывного типа. Но ведь лиха беда — начало!
Не менее, если не более важно, что гравитационные волны сообщат нам самые интимные подробности внутреннего строения Солнца, ведь оно для этих волн прозрачно. Значит, гравитационное излучение, возникшее при перемещении внутрисолнечных масс и движении электромагнитных воли через поле Солнце, до нас дойдет. Дойдут до гравиприемников и те гравитационные волны, что пришли со стороны и по дороге пронизали Солнце. По тому, как подействовало на таких «транзитников» поле Солнца, можно будет составить об этом поле реальное представление.
А там за «опытом Герца» должна прийти очередь «опыта Попова».
Тяготение, работай!
Есть что-то приторное в заявлениях, будто наука обгоняет фантастику, разве что следует рассматривать такие заявления, как сугубо риторические, которым не верят и сами их авторы. Функция фантастики, ее прямое назначение — опережать науку, заглядывая в будущее. Выполнить такое назначение тем легче, что на будущее-то научная фантастика смотрит с высоко поднятых вверх ладоней своей кормилицы-науки.
Есть, однако, по крайней мере один случай, когда фантастика не угналась за наукой. Радио как средство связи не было угадано писателями. И Жюль Верн с запоздалой торопливостью вставил его в один из своих романов уже спустя достаточно много времени после открытия Александра Попова. Уж больно, наверное, антинаучно звучал бы до 1895 года рассказ о связи на многотысячекилометровом расстоянии без проводов… Открытие радио развязало фантастам руки, освободило еще одно направление для путешествий воображения. И о гравитационной связи, связи на гравитационных волнах писали уже не раз. Часто, впрочем, принимая при этом, что скорость их много выше скорости света. На самом деле скорость гравитационных волн равна скорости света, и, значит, выигрыша во времени тут получить не удастся, но во многих других отношениях грависвязь должна иметь огромные преимущества перед радио.
Ну, во-первых, для радиоволн практически непроницаемы многие твердые тела и жидкости. А гравитационные волны не знают серьезных преград. Они глубоко проникают в тела звезд и планет, способны проходить сквозь них, как свет проходит сквозь стекло.
В современной радиоволновой технике одна из главных, если не просто главная задача, — борьба с помехами связи; так называемая магнитная буря и даже обыкновенная гроза способны доставить массу неприятностей радистам. Ученые, занимающиеся проблемами радиосвязи, утверждают, что большая половина сил в их области деятельности уходила и уходит на защиту аппаратуры от помех все новыми и новыми способами. И хотя успехи тут достигнуты немалые, но решить эту проблему до конца, по-видимому, просто невозможно; такова уж природа радиоволн, а с природой не поспоришь.