Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии
Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии читать книгу онлайн
В популярной форме рассказывается об истории вечного двигателя от первых попыток его создания до современных изобретений . Раскрывается значение для энергетики двух фундаментальных законов — первого и второго начал термодинамики. Показана бесполезность попыток обойти эти законы независимо от сложности предлагаемых для этого устройств.
Для широкого круга читателей, интересующихся историей техники и ее современными проблемами.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Оценка энергетических ресурсов с помощью эксергии широко используется и в теории — во многих разделах термодинамики и в инженерной практике. Эксергия служит общей, единой мерой любых видов энергии (потока теплоты, вещества, излучения), определяя точной количественной мерой ее качество. Она дает возможность сформулировать второй закон термодинамики в менее общей, но зато более практически удобной форме, чем энтропия. Эта формулировка гласит: В любых реальных процессах, протекающих в условиях взаимодействия с равновесной окружающей средой, эксергия либо остается неизменной (в идеальных процессах), либо уменьшается (в реальных). Это означает, что любой процесс, в котором общая эксергия на выходе Еʺ равна или меньше входящей E’ возможен; напротив, если Еʺ > E’, то невозможен и представляет собой некий вариант ppm-2.
Если отнести Еʺ к E’ то получим так называемый эксергетический КПД ηe = Еʺ/E’. Очевидно, что ηe в идеальном случае равен единице, т.е. 100%, а в реальном ηe < 100%. Если же ηe получается больше 100%, то мы неизбежно имеем дело с каким-либо вариантом ppm-2. Здесь просматривается четкая связь с фундаментальным энтропийным определением второго закона. Первый случай — идеальный процесс соответствует постоянству энтропии, второй — ее росту. Но пользоваться эксергетическим критерием более удобно: он непосредственно включает энергетические величины и в этом отношении аналогичен первому закону термодинамики. (Напомним, что непременное условие выполнения первого закона — равенство энергий: ∑W’ = ∑Wʺ; для второго закона ∑Eʺ ≤ ∑Е’.)
Вооружившись эксергетическими уравнениями, можно без излишних сложностей проанализировать любой нужный нам процесс или систему. Если системы еще нет, мы исследуем ее проект на предмет возможности ее осуществления; если она существует, то можно проверить, каков ее КПД.
Эксергия дает также возможность сформулировать удобное определение ppm-2, симметричное определению ppm-1. Если ppm-1 — это машина, делающая энергию из «ничего» (∑Wʺ > ∑W') разность ΔW = ΔWʺ — ΔW' берется «ниоткуда»), то ppm-2 — это машина, делающая эксергию из того же «материала» (∑Еʺ > ∑Е'; разность ΔЕ = ΔЕʺ — ΔЕ' берется тоже «ниоткуда»).
Эксергия дает возможность более удобно, чем с помощью энтропии, охарактеризовать энергетические превращения в биологических объектах. Действительно, характеризуя энергетику растений и животных, мы по образцу [1.8, 1.10] говорили о том, что, поглощая потоки вещества и энергии с малой энтропией, они выдают их с большей энтропией, т. е. «сбрасывают» энтропию в окружающую среду. Тем самым доказывается, что они функционируют в полном согласии со вторым законом. Но как сказать одним словом (причем строго научно) не о том, что они «сбрасывают», а о том, чем они питаются (в энергетическом смысле)?
Физики, привыкшие к «понятной, родной энтропии» (по выражению одного физико-химика), не смогли с ней расстаться и подошли к задаче чисто математически. Э. Шредингер ввел понятие «негэнтропии» (негативная» энтропия, энтропия с обратным знаком). Получается, что, следовательно, они «питаются» отрицательной энтропией — «негэнтропией». За Шредингером термин «негэнтропия» пустили в ход и другие физики, а за ними и некоторые биологи. С формально-математической стороны здесь все в порядке; любая величина может быть представлена как положительной, так и отрицательной. Однако за термином «негэнтропия» не стоит никакая физическая реальность: значение энтропии, меньшее нуля, соответствует некоторому несуществующему состоянию «сверхорганизованности».
Очевидно, что эксергия более строго, чем негэнтропия, характеризует упорядоченную качественную энергию, за счет которой организм живет.
«Питание» организма эксергией имеет четкий физический смысл. То, что организм использует, определяется непосредственно разностью получаемой и отводимой эксергии. При таком подходе все становится на место без каких-либо оговорок.
В частности, становятся четко просматриваемыми энергетические связи в «экологической пирамиде». Растения, поглощая эксергию с солнечным светом и веществами из почвы и воздуха, не только живут сами, но и дают эксергию животным. Стоящий на вершине экологической пирамиды человек получает эксергию со «всех этажей» пирамиды — от растений, животных и неравновесной окружающей среды.
Каждый «этаж» имеет и свои отходы, эксергия которых используется на нижестоящих этажах.
Любопытно, что Л. Больцман, который больше, чем кто-либо, занимался энтропией, описывая такую экологическую пирамиду, пользовался не энтропией, а «энергией, которую можно использовать», т. е. по существу эксергией. Он писал [1.23]: «Всеобщая борьба за существование живых существ — это не борьба за составные элементы, — составные элементы всех организмов имеются налицо в избытке в воздухе, воде и в недрах земли, и не за энергию, ибо она в изобилии содержится во всяком теле, к сожалению, в форме непревращаемой теплоты [63]. Но это борьба за энергию, которую можно использовать при переходе с горячего Солнца к холодной Земле. Чтобы возможно полнее использовать этот переход, растения распускают огромную поверхность своих листьев и заставляют солнечную энергию, прежде чем она упадет до уровня температуры земной поверхности, выполнять химические синтезы… Продукты этой химической кухни служат предметом борьбы в мире животных».
Во времена Больцмана экологический кризис еще не возникал в такой форме, как теперь; поэтому он пишет о составных элементах, что они «имеются в избытке».
Пользуясь понятием эксергии, мы в следующей главе сможем рассмотреть целый ряд предложений по созданию ppm-2. Здесь же мы проанализируем в качестве примера тепловой насос — известное техническое устройство, приводимое сторонниками энергетической инверсии как наглядный пример реальной «концентрации энергии». Этому простому и понятному устройству приписываются самые невероятные, чудесные свойства; опираясь на них, тепловой насос пытаются использовать как таран, чтобы пробить брешь во втором законе термодинамики и протащить через нее ppm-2 в энергетику.
4.4. Тепловой насос — чудо или не чудо?
Напомним принцип действия теплового насоса [64] (о нем уже шла речь в гл. 3). Независимо от типа и конструкции это устройство выполняет, как правило, одну функцию — отбирает теплоту QО.С. от окружающей среды при ее температуре TО.С. и отдает теплоту при более высокой температуре TГ в отапливаемое помещение или для подогрева в каком-либо техническом устройстве. Такой процесс перехода теплоты сам по себе происходить не может — это запрещено вторым законом термодинамики. Поэтому для обеспечения работы тепловых насосов необходима определенная затрата эксергии. Чаще всего для привода теплового насоса используется электроэнергия.
Принципиальная схема наиболее простого (парокомпрессионного) теплового насоса показана на рис. 4.4.
Рабочее тело в парообразном состоянии сжимается компрессором (поэтому установка и называется парокомпрессионной). Нагревшийся при сжатии пар охлаждается и переходит в жидкое состояние в конденсаторе; при этом от него при повышенной температуре TГ отводится к потребителю (например, в нагреваемое помещение) теплота QT. Полученная жидкость расширяется в дросселе, и ее давление снижается. При этом часть жидкости испаряется и ее температура падает до TК, несколько более низкой, чем температура окружающей среды TО.С.. В испарителе холодная жидкость, отнимая теплоту QО.С. у окружающей среды, полностью испаряется и снова поступает в компрессор; цикл замыкается.
Возьмем для примера конкретные показатели работы насоса, близкие к тем, которые встречаются на практике.