-->

Мир многих миров. Физики в поисках иных вселенных.

На нашем литературном портале можно бесплатно читать книгу Мир многих миров. Физики в поисках иных вселенных., Виленкин Александр-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Мир многих миров. Физики в поисках иных вселенных.
Название: Мир многих миров. Физики в поисках иных вселенных.
Дата добавления: 16 январь 2020
Количество просмотров: 303
Читать онлайн

Мир многих миров. Физики в поисках иных вселенных. читать книгу онлайн

Мир многих миров. Физики в поисках иных вселенных. - читать бесплатно онлайн , автор Виленкин Александр

Все мы живем в остатках огромного взрыва, случившегося около 14 миллиардов лет тому назад и положившего начало нашей Вселенной. Однако что предшествовало этому грандиозному событию? И какова вероятность того, что помимо нашего мира где-то существуют другие? В своей популярно написанной книге физик, профессор университета Тафтс (США) Алекс Виленкин знакомит читателя с последними научными достижениями в сфере космологии и излагает собственную теорию, доказывающую возможность — и, более того, вероятность — существования бесчисленных параллельных вселенных. Выводы из его гипотезы ошеломляют: за границами нашего мира раскинулось множество других миров, похожих на наш или принципиально иных, населенных невообразимыми созданиями или существами, неотличимыми от людей. Идеи Виленкина оказались настолько ясными, убедительными и в то же время революционными, что в одночасье превратили скромного кабинетного ученого в звезду популярных ток-шоу, а его книгу — в международный бестселлер, получивший колоссальный общественный резонанс.

 

УДК 524

ББК 22 632

ISBN 978-5-271-25401-7 (ООО "Издательство Астрель") © 2006 by Alex Vilenkin all rights reserved

© Фонд Дмитрия Зимина "Династия", издание на русском языке, 2009

© А Сергеев, перевод на русский язык, 2009

© А.Бондаренко, художественное оформление, макет, 2009

© ООО "Издательство Астрель", 2009

Издательство CORPUS ®

 

Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда — развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе — сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" — издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:

WWW.DYNASTYFDN.RU

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 30 31 32 33 34 35 36 37 38 ... 48 ВПЕРЕД
Перейти на страницу:

Сверхновые типа Iaимеют почти одинаковую мощность, поскольку взрывающиеся белые карлики обладают одинаковой массой, равной пределу Чандрасекара. [113]Зная эту мощность, можно определить расстояние до сверхновой, а раз нам известно расстояние, то легко найти и время взрыва — просто подсчитав, за какой срок свет покроет эту дистанцию. Кроме того, для определения скорости, с которой в то время расширялась Вселенная, можно использовать покраснение, или доплеровское смещение света. [114]Таким образом, анализируя свет далеких сверхновых, можно выяснить историю космологического расширения.

Этот метод был усовершенствован двумя конкурирующими группами астрономов, одна из которых называлась Supernova Cosmology Project, а другая High-Z [115]Supernova Search Team. Эти две группы соревновались в определении темпов замедления космологического расширения под действием гравитации. Но обнаружили они нечто совершенно иное. В 1998 году команда High-Z сообщила, что вместо замедления уверенно наблюдает ускорение расширения Вселенной на протяжении последних примерно пяти миллиардов лет. Чтобы сделать такое заявление, требовалась определенная смелость, поскольку ускоренное расширение было недвусмысленным признаком космологической постоянной. Когда одного из руководителей группы, Брайана Шмидта (Brian Schmidt), попросили выразить свое отношение к этому результату, он ответил: "Нечто среднее между удивлением и ужасом". [116]

Несколько месяцев спустя команда Supernova Cosmology Project сообщила об очень похожих результатах. Как выразился руководитель этой группы Сол Перлмуттер (Saul Perl-mutter), результаты двух команд находились "в отчаянном согласии".

Открытие породило в физическом сообществе настоящую взрывную волну. Некоторые просто отказывались верить полученным результатам. Слава Муханов [117]предложил мне поспорить на бутылку бордо, что свидетельства космологической постоянной вскоре бесследно исчезнут. Когда в итоге Муханов выставил бутылку, мы вместе насладились вином, и, похоже, присутствие космологической постоянной не повлияло на его букет.

Было также предположение, что на яркость сверхновых могут влиять факторы, отличные от расстояния. Например, если бы свет рассеивался частицами пыли в межгалактическом пространстве, сверхновые выглядели бы более тусклыми, вводя нас в заблуждение и заставляя думать, что они находятся дальше, чем есть. Эти сомнения были рассеяны спустя несколько лет Адамом Райессом (Adam Riess) из Института космического телескопа в Балтиморе, который изучал самую далекую сверхновую, известную на тот момент, — SN 1997ff. Если бы ослабление было вызвано экранирующей пылью, эффект лишь возрастал бы с расстоянием. Но эта сверхновая была ярче, а не слабее, чем должна быть в "пограничной" Вселенной, которая не ускоряется и не тормозится. Объяснение состояло в том, что она взорвалась через 3миллиарда лет ПБВ, в эпоху, когда энергия вакуума еще не доминировала, и ускоренное расширение не началось.

По мере того как свидетельства в пользу ускоренного расширения становились все сильнее, космологи начинали понимать, что с определенной точки зрения возвращение космологической постоянной — не такая уж плохая вещь. Во-первых, как говорилось в главе 9, она обеспечивает недостающую массу, делая общую плотность Вселенной равной критической. А во-вторых, она разрешает давнюю проблему несоответствия космических возрастов. Возраст Вселенной, вычисленный без космологической постоянной, оказывался меньше возраста самых старых звезд. Если же космологическое расширение ускоряется, значит, в прошлом оно шло медленнее, и Вселенной потребовалось больше времени, чтобы расшириться до своего нынешнего размера. [118]Космологическая постоянная делает Вселенную старше, устраняя несоответствие возрастов. [119]

Итак, спустя всего несколько лет после открытия космологического расширения было уже трудно представить себе, как мы вообще могли без него жить. И сегодня дебаты сместились к вопросу о том, что же оно собой представляет.

Объясняя совпадение

Наблюдавшееся значение плотности энергии вакуума — примерно втрое превосходящее среднюю плотность вещества — в первом приближении соответствовало значениям, которые тремя годами раньше были предсказаны на основе принципа заурядности. Обычно физики считают успешные предсказания сильным доводом в пользу теории. Но в этот раз они не спешили признавать антропную аргументацию. В первые годы после открытия многие физики прикладывали неимоверные усилия в попытках объяснить ускоренное расширение без обращения к антропным аргументам. Самой популярной среди этих попыток была модель квинтэссенции, разработанная Полом Стейнхардтом (Paul Steinhardt) с коллегами. [120]

Идея квинтэссенции состоит в том, что энергия вакуума не постоянна, а постепенно убывает с расширением Вселенной. Ныне она так мала потому, что Вселенная весьма стара. Точнее говоря, квинтэссенция — это скалярное поле, энергетический ландшафт которого будто специально спроектирован для скоростного лыжного спуска (рис. 14.3). Предполагается, что в ранней Вселенной поле было высоко на холме, но к настоящему времени скатилось вниз, что соответствует низкой плотности энергии вакуума.

Мир многих миров. Физики в поисках иных вселенных. - image037.jpg
 

Рис. 14.3. Энергетический ландшафт квинтэссенции.

Недостаток этой модели состоит в том, что она не решает загадку совпадения — почему современная плотность энергии вакуума оказалась сравнимой с плотностью вещества (см. главу 12). Форму энергетического холма можно подобрать так, чтобы это произошло, но это будет простой подгонкой, а не объяснением данных. [121]

С другой стороны, антропный подход предлагает естественное решение. Согласно принципу заурядности, большинство наблюдателей живет в таких областях, где плотность материи сравнялась с космологической постоянной как раз вблизи эпохи образования галактик. Формирование гигантских спиральных галактик, подобных нашей, завершилось в относительно недавнем космологическом прошлом — примерно через несколько миллиардов лет ПБВ. [122]С тех пор плотность вещества стала ниже, чем у вакуума, но не намного (в нашей области — примерно в три раза). [123]

Несмотря на многочисленные попытки, никакого другого способа правдоподобно объяснить это совпадение предложено не было. Постепенно коллективное сознание физиков стало привыкать к мысли, что антропная картина мира может закрепиться надолго.

За и против

Нетрудно понять, почему многие физики не хотят мириться с антропным объяснением. Стандарты точности в физике очень высоки, можно сказать, неограниченны. Впечатляющий пример дает вычисление магнитного момента электрона. Электрон можно рассматривать как крошечный магнит. Его сила характеризуется магнитным моментом, который впервые вычислил Поль Дирак в 1930-х годах. Результат очень точно согласовывался с экспериментом, но физики вскоре поняли, что имеется небольшая поправка к дираковскому значению, вызванная квантовыми флуктуациями вакуума. В результате началась гонка между теоретиками, которые выполняли все более точные расчеты, и экспериментаторами, измерявшими магнитный момент с все более и более высокой точностью. Самый последний результат измерений дает для поправочного множителя значение 1,001159652188с погрешностью в последней цифре. Теоретическое значение еще точнее. Удивительно, что согласие между этими двумя величинами наблюдается до  11-го знака после запятой. На самом деле, если бы такого согласия не было, пусть даже расхождение наблюдалось бы только в 11-м знаке, это стало бы сигналом тревоги, указывающим на пробел в нашем понимании электрона.

1 ... 30 31 32 33 34 35 36 37 38 ... 48 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название