-->

Мир многих миров. Физики в поисках иных вселенных.

На нашем литературном портале можно бесплатно читать книгу Мир многих миров. Физики в поисках иных вселенных., Виленкин Александр-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Мир многих миров. Физики в поисках иных вселенных.
Название: Мир многих миров. Физики в поисках иных вселенных.
Дата добавления: 16 январь 2020
Количество просмотров: 303
Читать онлайн

Мир многих миров. Физики в поисках иных вселенных. читать книгу онлайн

Мир многих миров. Физики в поисках иных вселенных. - читать бесплатно онлайн , автор Виленкин Александр

Все мы живем в остатках огромного взрыва, случившегося около 14 миллиардов лет тому назад и положившего начало нашей Вселенной. Однако что предшествовало этому грандиозному событию? И какова вероятность того, что помимо нашего мира где-то существуют другие? В своей популярно написанной книге физик, профессор университета Тафтс (США) Алекс Виленкин знакомит читателя с последними научными достижениями в сфере космологии и излагает собственную теорию, доказывающую возможность — и, более того, вероятность — существования бесчисленных параллельных вселенных. Выводы из его гипотезы ошеломляют: за границами нашего мира раскинулось множество других миров, похожих на наш или принципиально иных, населенных невообразимыми созданиями или существами, неотличимыми от людей. Идеи Виленкина оказались настолько ясными, убедительными и в то же время революционными, что в одночасье превратили скромного кабинетного ученого в звезду популярных ток-шоу, а его книгу — в международный бестселлер, получивший колоссальный общественный резонанс.

 

УДК 524

ББК 22 632

ISBN 978-5-271-25401-7 (ООО "Издательство Астрель") © 2006 by Alex Vilenkin all rights reserved

© Фонд Дмитрия Зимина "Династия", издание на русском языке, 2009

© А Сергеев, перевод на русский язык, 2009

© А.Бондаренко, художественное оформление, макет, 2009

© ООО "Издательство Астрель", 2009

Издательство CORPUS ®

 

Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда — развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе — сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" — издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:

WWW.DYNASTYFDN.RU

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 28 29 30 31 32 33 34 35 36 ... 48 ВПЕРЕД
Перейти на страницу:

Колоколообразная кривая

Самая серьезная критика антропного принципа связана с тем, что он не дает никаких проверяемых предсказаний. Весь его смысл сводится к тому, что мы можем наблюдать лишь такие значения постоянных, которые позволяют существовать наблюдателям. Это утверждение трудно считать предсказанием, поскольку оно с гарантией истинно. Вопрос в том, можем ли мы предложить что-то получше? Можно ли извлечь из антропных рассуждений какие-то нетривиальные предсказания?

Если величины, которые я собираюсь измерить, могут случайным образом принимать значения в широком диапазоне, то мне не удастся уверенно предсказать результаты измерений. Но я могу по крайней мере сделать статистическое предсказание. Допустим, я хочу предсказать рост первого встречного человека на улице. Согласно "Книге рекордов Гиннесса", самым высоким человеком в истории медицины был американец Роберт Першинг Уэдлоу, чей рост составлял 2,72метра. Самый низкий взрослый человек, индиец Гал Мохаммед, имел рост 57сантиметров. Чтобы быть уверенным в успехе, мне следует предсказать, что первый встречный будет иметь рост где-то между этими крайними значениями. Если только рекорды Гиннесса не будут побиты, это предсказание с гарантией окажется правильным.

Чтобы сделать более содержательное предсказание, мне следует изучить статистические данные о росте жителей Соединенных Штатов. Распределение по росту описывается колоколообразной кривой, изображенной на рисунке 14.1, с медианой 1,77метра (50% людей ниже и 50% — выше этого значения). Вряд ли первый встречный окажется великаном или карликом, поэтому я могу ожидать, что его рост окажется где-то около середины распределения. Чтобы сделать предсказание более определенным, я могу допустить, что он не будет из числа 2,5% самых низкорослых или из 2,5% самых высоких американцев. Остальные 95% имеют рост от 1,63до 1,90метра. Если я предскажу, что встречный будет иметь рост в этом диапазоне, а затем многократно проведу эксперимент, можно ожидать, что в 95% случаев я буду прав. Это называется предсказанием с точностью 95%.

Мир многих миров. Физики в поисках иных вселенных. - image035.jpg

Рис. 14.1.Распределение американцев по росту. Число людей с ростом в определенном интервале пропорционально площади под соответствующим участком кривой. Серые "хвосты" колоколообразной кривой соответствуют 2,5% на нижнем и верхнем участках распределения. Попадание в диапазон между этими отмеченными областями предсказывается с точностью в 95%.

Чтобы сделать предсказание с точностью 99%, мне следует отбросить по 0,5% с обоих концов распределения. Чем выше точность, тем меньше мои шансы ошибиться, но прогнозируемый диапазон роста становится все шире, а само предсказание — все менее интересным.

Можно ли применить аналогичную технику к предсказанию фундаментальных постоянных? Я пытался найти ответ на этот вопрос летом 1994 года, когда гостил у моего друга Тибо Дамура (Thibault Damour) во французском Институте высших научных исследований. Институт расположен в небольшой деревушке Бюр-сюр-Иветт (Bures sur Yvette) в 30минутах поездом от Парижа. Мне нравится французская провинция, французское вино и — несмотря на всю ее калорийность — французская кухня. Знаменитый российский физик Лев Ландау часто говорил, что один бокал спиртного убивает его вдохновение на неделю. К счастью, это не мой случай. Вечером, воодушевленный замечательным ужином, я прогуливался по лугам вдоль берегов речки Иветт, а мои мысли постепенно вернулись к проблеме антропных предсказаний.

Допустим, что фундаментальная постоянная, назовем ее X, меняется от одной области Вселенной к другой. В некоторых областях присутствие наблюдателей невозможно, а в других они могут существовать, и значение Xбудет измерено. Предположим также, что некое Статистическое бюро Вселенной собирает и публикует результаты этих измерений. Распределение значений, измеренных различными наблюдателями, будет, скорее всего, иметь колоколообразную форму — подобную той, что на рисунке 14.1. Тогда мы можем отбросить 2,5% с обоих концов распределения и предсказать значение X с точностью 95%.

Мир многих миров. Физики в поисках иных вселенных. - image036.jpg

Рис. 14.2. Наблюдатель, случайным образом вброшенный во Вселенную. Измеренные им значения постоянных могут быть предсказаны по статистическому распределению.

Каков может быть смысл подобного предсказания? Если мы случайно вбросим наблюдателя во Вселенную, обнаруженное им значение X будет находиться в предсказанном интервале в 95% случаев. К сожалению, мы не можем проверить такого рода предсказание, поскольку все области с различными значениями X находятся далеко за горизонтом. Мы можем измерить X только в нашей местной области. Но что мы все-таки можем, так это считать свое положение случайным. Мы — лишь одна из множества цивилизаций, разбросанных по Вселенной. Априори у нас нет оснований считать, что значение X в нашей области очень редкое, иными словами, особое по сравнению с величинами, измеренными другими наблюдателями. Отсюда мы можем с точностью 95% предсказать, что наши измерения дадут значение в указанном диапазоне. Для данного подхода ключевую роль играет предположение о нашей неисключительности; я называю его "принципом заурядности".

Некоторые мои коллеги возражают против такого наименования. Вместо этого они предлагают говорить о "принципе демократии". Конечно, никто не хочет быть заурядным, но зато это слово выражает ностальгию по тем временам, когда люди находились в центре мира. Так заманчиво думать, что мы особенные, но в космологии предположение о нашей заурядности вновь и вновь оказывается очень плодотворной гипотезой.

Такого же рода рассуждения применимы и к предсказанию роста людей. Представьте на мгновение, что вы не знаете собственного роста. Тогда, чтобы предсказать его, вы можете использовать статистические данные для своей страны и пола. Если, например, вы взрослый мужчина, живущий в США, и у вас нет оснований считать себя необычно высоким или низким, то с 95-процентной уверенностью вы можете считать, что ваш рост лежит в интервале от 1,63до 1,90метра.

Позднее я узнал: сходные идеи уже высказывали философ Джон Лесли (John Leslie) и — независимо от него — принстонский астрофизик Ричард Готт (Richard Gott). Главным образом их интересовало предсказание долговечности человеческой расы. Они доказывали, что человечество вряд ли проживет намного дольше, чем уже существует, поскольку в противном случае мы находились бы на удивление близко к началу нашей истории. Это так называемый "аргумент судного дня". Он восходит к Брэндону Картеру, изобретателю антропного принципа, который изложил данный аргумент на своей лекции в 1983 году, но никогда не публиковал его в печати (похоже, Картеру и без того хватало спорных идей). [106]Готт также использовал аналогичное рассуждение для предсказания падения Берлинской стены и срока жизни британского журнала Nature, где он опубликовал свою первую статью на эту тему. Последнее предсказание о том, что Natureбудет выходить до 6800 года, пока остается непроверенным.

 Если у нас есть статистическое распределение для фундаментальных постоянных, измеренных другими наблюдателями, мы можем, опираясь на принцип заурядности, сделать предсказание с заданным уровнем надежности. Но откуда мы получим это распределение? Вместо данных Статистического бюро Вселенной мы можем использовать результаты теоретических расчетов. Статистическое распределение нельзя узнать без теории, описывающей мультиверс с переменными константами. В настоящее время лучший кандидат на роль такой теории — это теория вечной инфляции. Как говорилось в предыдущей главе, квантовые процессы в инфлирующем пространстве-времени порождают множество доменов со всеми возможными значениями постоянных. Мы можем попробовать рассчитать распределение для констант, исходя из теории вечной инфляции, а затем — кто знает! — можем сопоставить результаты с экспериментальными данными. Тем самым, открывается захватывающая перспектива несмотря ни на что сделать вечную инфляцию объектом наблюдательной проверки. Конечно, я не мог упустить такую возможность.

1 ... 28 29 30 31 32 33 34 35 36 ... 48 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название