Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии

На нашем литературном портале можно бесплатно читать книгу Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии, Бродянский Виктор Михайлович-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии
Название: Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии
Дата добавления: 16 январь 2020
Количество просмотров: 318
Читать онлайн

Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии читать книгу онлайн

Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии - читать бесплатно онлайн , автор Бродянский Виктор Михайлович

В популярной форме рассказывается об истории вечного двигателя от первых попыток его создания до современных изобретений . Раскрывается значение для энергетики двух фундаментальных законов — первого и второго начал термодинамики. Показана бесполезность попыток обойти эти законы независимо от сложности предлагаемых для этого устройств.

Для широкого круга читателей, интересующихся историей техники и ее современными проблемами.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 28 29 30 31 32 33 34 35 36 ... 63 ВПЕРЕД
Перейти на страницу:

δl = p∙δV. (3.6)

Нетрудно видеть, что во втором случае, аналогично первому, для некоторого элементарного количества теплоты δQ, при передаче которого Т неизменна,

δq = T∙δS. (3.7)

Таким образом, передача энергии в двух формах — теплоты и работы (несмотря на их принципиальную разницу — неорганизованную форму в первом случае и организованную во втором) может быть выражена аналогично. Количество энергии в обоих случаях (3.6) и (3.7) выражается произведением двух величин.

Первая из них (давление р для работы и температура Т для теплоты) — это силы (потенциалы), которые вызывают данную форму передачи энергии. Вторая — это «так называемые координаты, изменение которых показывает наличие данной формы передачи энергии. Если координата (V или S) не изменилась (т. е. δV или δS равны нулю), то δL и δQ тоже будут равны нулю и никакой передачи энергии не произойдет.

Первые величины называют еще факторами интенсивности, а вторые — экстенсивности. Следовательно, энтропия — фактор экстенсивности при передаче энергии в форме теплоты. Интенсивные факторы не связаны с массой тела, которому передается энергия, экстенсивные факторы, напротив, зависят от нее: и энтропия S, и объем V при прочих равных условиях тем больше, чем больше масса газа. Соответственно они измеряются в единицах, отнесенных к единице массы.

Понятие об интенсивных и экстенсивных факторах имеет очень широкий смысл, далеко выходящий за пределы термодинамики. Интенсификация любого процесса (даже в народнохозяйственном плане) достигается не за счет увеличения экстенсивного фактора, а только посредством интенсивного фактора. В случае передачи энергии в форме теплоты таким фактором служит температура.

Может возникнуть естественный вопрос: если изменение энтропии, равное нулю, показывает отсутствие передачи энергии в форме теплоты, то как быть с тепловой машиной Карно? Ведь к ней теплота и подводится, и отводится, а энтропия постоянна?

Это противоречие кажущееся: внешние потоки энтропии постоянны, но внутри машины циркулирующее рабочее тело постоянно и нагревается, и охлаждается. При его нагревании двигатель получает теплоту и энтропия рабочего тела растет; при охлаждении и отводе теплоты энтропия уменьшается. В идеальном процессе эти величины равны, и в целом энтропия непрерывно отдается теплоприемнику в том же количестве, что и поступает от источника теплоты. Поэтому круговой процесс — цикл может повторяться сколь угодно долго.

Закономерность, характерную для идеальных процессов, — существование величины S, которая в сумме не меняется во всех процессах, связанных с переносом энергии, — можно назвать принципом существования и постоянства энтропии.

Если бы свойства энтропии ограничивались только постоянством в идеальных обратимых процессах, то споров вокруг нее было бы значительно меньше. Однако энтропия имеет еще одно важное свойство, именно оно уже более 100 лет вызывает острые споры.

Начало им положил тот же Р. Клаузиус. Он развил идеи С. Карно на новом уровне, основанном на механической теории теплоты, и установил еще одно важное свойство энтропии. Опираясь на него, Клаузиус делает один далеко идущий вывод, из-за которого и возникла дискуссия, продолжавшаяся больше века.

О чем же идет речь?

С. Карно ввел и рассматривал идеальные обратимые процессы, в которых переход теплоты от тела с высокой температурой Т1 — теплоотдатчика — к телу с низкой температурой Т2 — теплоприемнику — сопровождается получением работы; напротив, переход теплоты от теплоотдатчика с низкой температурой Т2 к теплоприемнику с более высокой температурой Т1 происходит с затратой работы. Однако существуют и другие, необратимые процессы переноса теплоты, могущие сами по себе идти только в одну сторону. Именно на них и обратил внимание Клаузиус. Действительно, что будет, если источник теплоты — теплоотдатчик с более высокой температурой Т1 — привести в тепловой контакт (например, соединить металлическим стержнем) с теплоприемником, температура Т2 которого ниже, без тепловой машины? Тогда возникнет тепловой поток от тела с температурой T1 к телу с температурой Т2; работы при этом, естественно, никакой не производится, и всю теплоту, отдаваемую теплоотдатчиком, получит теплоприемник.

Таким образом, процесс в этом случае будет односторонним, необратимым, поскольку в обратную сторону он идти не может. (Горячая печка может греть холодный чайник, но холодный чайник греть горячую печку не может.) Как будет вести себя здесь энтропия? Теплоотдатчик отдает энтропию S1 = Q1/T1; теплоприемник получает энтропию S1 = Q1/T2 (теплота, получаемая теплоприемником Q2 = Q1, так как она на работу не расходуется). Поскольку Т2 < T1, то S2 > S1. Энтропия возрастает!

Тот же эффект может получиться и при работе тепловой машины, но не идеальной, как у Карно, а реальной, действие которой сопровождается потерями.

Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии - i_049.png
Рис. 3.4. Полосовые графики потоков энергии в тепловом двигателе при обратимом и необратимом протекании процессов

Для реального двигателя это означает, что при тех же температурах T1 и T2 (рис. 3.4) и количестве теплоты Q1 работа будет уже не L, а L' < L. Следовательно, по закону сохранения энергии теплоприемник получит уже большее количество теплоты Q'2 > Q2, так как в работу ее перешло меньше: Q2 = Q1 — L, Q'2 = Q1 — L'; но L' < L, следовательно, Q'2 > Q2. Отсюда следует, что полученная теплоприемником энтропия S'2 = Q'2/T2 > S2.

Опять энтропия возросла!

Для реального теплового насоса при тех же температурах Т1 и T2 и том же количестве теплоты Q2 затрата работы L' будет больше, чем в идеальном случае: L' > L. Поэтому количество теплоты Q'1 будет также больше, чем Q1, так как Q'1 = Q2 + L'. Следовательно, энтропия, получаемая теплоприемником при T1, будет больше, чем при работе идеального теплового насоса:

S'1 = Q'1/T1 > S1 – Q1/T1.

И здесь энтропия возрастает! Анализ и других реальных необратимых процессов преобразования энергии неукоснительно показывает — энтропия в них, возрастает.

Р. Клаузиус обобщил эту закономерность на любые необратимые энергетические процессы, введя принцип возрастания энтропии: во всех реальных процессах преобразования энергии в изолированных системах [52] суммарная энтропия всех участвующих в них тел возрастает. Это возрастание энтропии при прочих равных условиях тем больше, чем сильнее процесс (или процессы) в рассматриваемой системе отличается от идеальных, обратимых. В тепловом двигателе, например, как мы видели, ухудшение его действия (т. е. уменьшение получаемой из того же количества теплоты Q1 работы L при тех же граничных температурах Т1 и T2) обязательно сопровождается увеличением энтропии. В тепловом насосе увеличение необходимых затрат работы приводит к тому же результату — росту энтропии. Следовательно, энтропия может выполнять еще одну «должность» — быть характеристикой необратимости процессов, показывать отклонение их от идеальных. Чем больше рост энтропии, тем это отклонение больше.

Таким образом, второй закон термодинамики состоит из констатации двух положений — существования и постоянства энтропии в обратимых процессах (Карно) и возрастания энтропии в необратимых процессах (Клаузиус).

1 ... 28 29 30 31 32 33 34 35 36 ... 63 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название