Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии
Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии читать книгу онлайн
В популярной форме рассказывается об истории вечного двигателя от первых попыток его создания до современных изобретений . Раскрывается значение для энергетики двух фундаментальных законов — первого и второго начал термодинамики. Показана бесполезность попыток обойти эти законы независимо от сложности предлагаемых для этого устройств.
Для широкого круга читателей, интересующихся историей техники и ее современными проблемами.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Концентрация (от лат. con — «к» и centrum — «центр») — это понятие, связанное с сосредоточением чего-либо в определенном месте (объеме, поверхности). Применительно к энергии это соответствует ее количеству, приходящемуся на единицу объема или поверхности (Дж/см3 или Дж/см2). Если это количество растет, говорят о концентрировании энергии, если падает — о ее рассеянии.
Сторонники ppm-2 используют этот термин в смысле, не имеющем отношения к его действительному содержанию. Они называют «концентрированной» энергией электрическую энергию и работу, а «рассеянной» — внутреннюю энергию тел и теплоту. Однако разница между ними не в концентрации (она в каждом случае может быть и высокой, и низкой), а в степени упорядоченности, организованности движения или положения частиц (об этом мы говорили в гл. 2). Как мы увидим далее, именно эта упорядоченность и определяет в основном качественную сторону энергии, ее работоспособность.
Подмена понятия качества, работоспособности энергии ее «концентрацией», а деградации, обесценивания — «рассеянием» вносит дополнительную путаницу, поскольку «концентрация» и «рассеяние» энергии не определяют в принципе возможности получения работы (т. е. создания двигателя) [45].
Теперь, после уточнения всех терминов, мы можем вернуться к принципиальным основам ppm-2. Становится очевидным, что его идея основана на получении работы (или, что то же самое, электроэнергии, могущей преобразовываться в работу) из равновесной окружающей среды путем использования той части ее внутренней энергии, которая связана с хаотическим тепловым движением молекул.
В.К. Ощепков назвал такой процесс ученым термином «энергетическая инверсия» (инверсия — от лат. inversion — «перестановка», «переворачивание»). Другими словами, это — обратное превращение части внутренней энергии равновесной окружающей среды в электроэнергию или работу.
Именно такой процесс запрещен вторым началом термодинамики. Поэтому, чтобы доказать возможность создания ppm-2, нужно неизбежно опрокинуть или обойти «стоящий на дороге» второй закон термодинамики.
Известно, что поэзия позволяет во многих случаях выразить мысль более ясно и компактно, чем проза.
С этой точки зрения представляют интерес стихи, посвященные критике Второго начала термодинамики. Их прислал один из сторонников профессора Ощепкова — М.П. Кривых. Его сочинение возрождает традицию, идущую еще от римлянина — Тита Лукреция Кара (I век до нашей эры), написавшего знаменитую поэму «О природе вещей».
С любезного разрешения автора, привожу его ниже с некоторыми несущественными сокращениями.
В этой «антитермодинамической поэме» достаточно четко сформулирована основная идея сторонников «энергетической инверсии». Однако доводы в ее пользу здесь, как и в большей части сочинений других авторов той же ориентации, носят в основном эмоциональный характер. В наше время этого недостаточно: нужно использовать и нечто более основательное.
Сторонники ppm-2 понимают это и используют для дискуссии целый комплекс разнообразных доводов — от общефилософских со ссылками на классиков до экспериментальных данных из различных областей науки. Все доводы, как правило, носят описательно-умозрительный характер и даются без четкого научного обоснования. Однако их красивое внешнее оформление в сочетании с убежденностью и энтузиазмом (а иногда и не очень точным изложением фактов) в некоторых случаях может показаться убедительным. Помогает тут и благородная цель — экономия ресурсов и спасение окружающей среды от загрязнения.
Поэтому прежде чем переходить к разбору различных ppm-2, нужно еще уделить и некоторое внимание разбору второго закона термодинамики, хотя это потребует от читателя, не занимающегося специально термодинамикой, определенной сосредоточенности.
Дело не только в том, что второй закон термодинамики, на первый взгляд не более трудный для понимания, чем первый, на самом деле далеко не так прост, как кажется. О нем написано очень много, мягко говоря, неквалифицированных статей и даже учебников, которые внесли, как писал академик А.В. Шубников, «невероятное количество ошибок». Именно на почве, удобренной этими ошибками, время от времени вырастают самые разнообразные псевдоученые «сочинения» — биологические, технические, экономические и другие. Некоторыми из них нам придется заняться при разборе второго закона.
3.2. Несимметричность взаимных превращений теплоты и работы. Принцип Карно
Второй закон термодинамики, так же как и первый, формировался в течение длительного периода трудами многих ученых и инженеров. Без его использования дальнейшее развитие теплоэнергетики, химической технологии и многих других направлений техники и науки было бы невозможным.
Установление общности и количественной эквивалентности различных форм движения, а затем точное формулирование на этой основе первого закона термодинамики было необходимо, но недостаточно. Нужно было установить условия, определяющие возможности перехода одних форм энергии в другие и прежде всего теплоты в работу. Практика показывала, что представление о всеобщей превратимости, эквивалентности (т.е. равноценности) различных видов энергии нуждается в уточнении даже применительно к таким ее формам, как теплота и работа. Действительно, почему переход работы в теплоту совершается очень просто, не вызывая никаких затруднений? Еще на заре цивилизации человек добывал огонь трением, производя безо всякой науки именно такое преобразование. Однако превратить теплоту в работу удалось (если не считать античных паровых игрушек вроде «эолопила» Герона) с большим трудом только во второй половине XVIII в., когда были созданы паровые машины. И дело было здесь не в технической сложности этих машин (хотя это тоже сыграло свою роль), а в принципиальной трудности такого превращения, неясности условий, необходимых для него.