-->

Очевидное? Нет, еще неизведанное

На нашем литературном портале можно бесплатно читать книгу Очевидное? Нет, еще неизведанное, Смилга Вольдемар Петрович-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Очевидное? Нет, еще неизведанное
Название: Очевидное? Нет, еще неизведанное
Дата добавления: 16 январь 2020
Количество просмотров: 274
Читать онлайн

Очевидное? Нет, еще неизведанное читать книгу онлайн

Очевидное? Нет, еще неизведанное - читать бесплатно онлайн , автор Смилга Вольдемар Петрович

Эффектное название, возможно, и интригует, но, уж конечно, ничего не объясняет. А в этой книге довольно серьезно рассказывается о том, чего достигла физика со времен Галилея до Эйнштейна, о явлениях древних, как мир, и, по-видимому, всем знакомых, а в конечном счете — о специальной теории относительности.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 22 23 24 25 26 27 28 29 30 ... 62 ВПЕРЕД
Перейти на страницу:

Особо отметим: по Декарту, для передачи действия (силы) на расстояние необходима материальная, обладающая вполне определенными механическими свойствами среда — эфир.

Декарт и его последователи пытались представить себе тяготение на основе конкретной модели, желали свести все к воздействию тел на эфир и обратному действию эфира на небесные тела.

Никакого аналитического выражения Декарту, конечно, получить не удалось. Однако ученых того века в его гипотезе пленяла прелесть очевидности и наглядности.

Весьма ядовито характеризовал научную атмосферу того времени Мари Франсуа Вольтер, увлекавшийся в молодости физикой:

«Если француз приедет в Лондон, он найдет здесь большое различие в философии, а также во многих других вопросах.

В Париже он оставил мир полным вещества, здесь он находит его пустым. В Париже вселенная наполнена эфирными вихрями, тогда как тут, в том же пространстве, действуют невидимые силы.

В Париже давление Луны на море вызывает отлив и прилив, в Англии же, наоборот, море тяготеет к Луне.

У картезианцев все достигается давлением, что, по правде говоря, не вполне ясно, у ньютонианцев все достигается притяжением, что, однако, не намного яснее.

Наконец, в Париже Землю считают вытянутой у полюсов, как яйцо, а в Лондоне она сжата, как тыква…»

Декарт часто подписывался «Картезий». Отюда картезианство, картезианцы.

Эти слова написаны в 1727 году (40 лет прошло с появления «Начал»!), а скептицизм Вольтера распространяется, как видите, в равной мере на теории Ньютона и Декарта.

Так что закон тяготения проникал в умы с великим трудом.

Но как ни медленно побеждала истина, к началу XIX столетия все сомнения в справедливости закона Ньютона исчезли. Причем интересно, что именно французские ученые второй половины XVIII столетия окончательно отшлифовали небесную механику и показали, что теория тяготения истинна и нет истины вне ее.

Закон тяготения, может быть, высшее достижение метода принципов. В нем ни слова не говорится о том, почему действует тяготение. Он отвечает только, как действует эта загадочная сила:

Очевидное? Нет, еще неизведанное… - i_038.png
И вот, наконец, сам закон тяготения.

Здесь F — сила притяжения между двумя любыми телами, m1 и m2 — их массы, r — расстояние между телами, f — постоянная размерная величина, численно равная силе притяжения двух тел единичной массы, разделенных единичным расстоянием. Называется она гравитационной постоянной в системе CGS

f = 6,7 · 10-8 см3/сек2·г.

Ничтожно малое значение f и объясняет, почему мы не замечаем сил притяжения между земными предметами.

В законе Ньютона обращают на себя внимание по меньшей мере три поразительных факта.

Удивление № 1.

Бросается в глаза удивительная аналогия характера гравитационных сил с взаимодействием совершенно другой природы — электрических зарядов (закона Кулона).

F = ±[e1] · [e2]/r2.

Мы не будем касаться причин этого любопытного совпадения и ограничимся констатацией факта. Правда, с другой стороны, есть и кардинальное отличие: гравитационные «заряды» имеют всегда только один знак.

Удивление № 2.

Закон Ньютона предполагает, и на этом мы задержимся дольше, что тяготение распространяется с бесконечно большой скоростью.

Действительно, закон тяготения подразумевает, что для определения силы притяжения в каждый данный момент времени достаточно знать расстояние между телами в тот же самый момент времени. Как изменяется расстояние со временем, совершенно не существенно, — говоря учено, несущественна пространственно-временная биография взаимодействующих тел.

Посмотрим, что изменилось бы в законе Ньютона, если бы скорость тяготения была конечна, а во всем остальном закон взаимодействия остался бы прежним.

Допустим, два тела взаимодействуют по закону Ньютона. При этом тяготение распространяется с конечной скоростью с. Если тела покоятся — все остается по-старому. Но не то, если они движутся друг относительно друга.

Очевидное? Нет, еще неизведанное… - i_039.png

Конечно, в первую очередь возникает вопрос, что означает: скорость распространения тяготения конечна и равна с? В какой системе отсчета? Поэтому примем условно некую «абсолютную систему», в которой скорость тяготения и есть с.

Мы не знаем и не хотим знать, почему скорость распространения тяготения конечна: может быть, потому, что тела постоянно посылают волны тяготения, которые распространяются в пространстве с конечной скоростью, может быть, по другой причине. Мы хотим просто установить, как изменится при этом закон Ньютона.

Для простоты рассмотрим только тот случай, когда первое тело покоится в нашей «абсолютной системе отсчета». Пусть в момент времени t0 0, который мы выберем за начало отсчета, второе тело начинает равномерно приближаться к первому со скоростью V. Когда тела покоились, сила взаимодействия определялась законом Ньютона:

Очевидное? Нет, еще неизведанное… - i_040.png

где r0 — расстояние между покоящимися телами. В какой-то момент времени t расстояние между телами оказалось равным r(t) = r0 – Vt.

А чему равна сила взаимодействия? Так как скорость распространения тяготения конечна, взаимодействие между телами будет определяться расстоянием не в данный момент времени, а в какой-то более ранний. «Волна» тяготения, которая добралась в момент t до первого тела, была послана вторым в какой-то более ранний момент (t1 < t).

Этот момент легко определяется, но, возможно, не стоит так углубляться в формулы. Тем более что мы умалчиваем о более существенном.

Действительно, мы, по сути дела, отмахнулись от ответа, в какой системе определена скорость тяготения, а пока нет системы отсчета, всякие разговоры о скорости распространения тяготения абсолютно бессодержательны.

Естественно, такая абсолютная система отсчета (если она существует) должна быть связана не с двумя наугад взятыми телами (как в нашем примере), а как-то со свойствами самого пространства (может быть, с системой неподвижных звезд?).

Сразу возникает мысль: а нельзя ли, исследуя тяготение, реально отыскать абсолютную систему? А как, между прочим, найти скорость распространения тяготения в других системах отсчета?

Внимание! Вопрос не так наивен, как может показаться.

В общем стоит допустить, что скорость распространения силы тяготения конечна, и физическая картина основательно запутывается, не говоря уже о том, что уравнения движения небесных тел весьма усложняются.

Ньютон сразу отбросил все подобные трудности. Он положил, что скорость распространения тяготения бесконечна. И тем самым ввел дальнодействие.

Но честно признаемся, эту идею можно принять лишь с некоторым усилием. Против нее протестует наше чувство. Все известные процессы распространяются с конечной скоростью. Даже свет! А тяготение почему-то такое странное исключение.

В общем можно только лишний раз поразиться гению и интуиции Ньютона.

Забегая вперед, заметим: теперь, после Эйнштейна, мы знаем, что Ньютон ошибся. Скорость распространения поля тяготения конечна и равна 300 000 километров в секунду. Кроме того, эта скорость обладает странным качеством — она постоянна в любой системе отсчета и не изменяется при переходе от одной системы к другой.

1 ... 22 23 24 25 26 27 28 29 30 ... 62 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название