Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики читать книгу онлайн
Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Если я подброшу монетку миллион раз, то, совершенно точно, «орёл» миллион раз не выпадет. Я не азартен, но я настолько в этом уверен, что, не задумываясь, поставил бы на это свою жизнь или свою душу. Да что там душу, я поставил бы на это свою зарплату за целый год. Я абсолютно убеждён, что законы больших чисел — то есть теория вероятности — сработают и не дадут меня в обиду. На них основана вся наука. Но я не могу этого доказать и на самом деле понятия не имею, почему они работают. Может быть, именно поэтому Эйнштейн говорил, что Бог не играет в кости. Вероятно, всё-таки играет.
Время от времени мы слышим утверждения физиков о том, что Эйнштейн не понимал квантовую механику и потому тратил своё время на наивные классические теории. Я очень сильно сомневаюсь, что это правда. Его аргументы против квантовой механики чрезвычайно изящны, кульминации они достигли в одной из самых сложных и самой цитируемой во всей физической науке статье [53]. Я считаю, что Эйнштейн был обеспокоен теми же вещами, что и занудный студент-тугодум. Как может окончательная теория реальности касаться чего-то столь маловразумительного, как степень нашего удивления относительно исхода эксперимента?
Я продемонстрировал вам некоторые парадоксальные, почти алогичные вещи, которые квантовая механика вываливает на классически настроенный мозг. Но я предполагаю, что вы не вполне удовлетворены. На самом деле я на это надеюсь. Если вы запутались, так и должно быть. Единственное лекарство, которое от этого помогает, — это доза математического анализа и погружение на несколько месяцев в хороший учебник по квантовой механике. Только очень странный мутант или человек, рождённый в очень необычной семье, может быть естественным образом настроен на понимание квантовой механики. Помните, в итоге даже Эйнштейн не смог её грокнуть.
5
Планк изобретает улучшенный эталонный масштаб
Однажды в стэнфордском кафетерии я заметил группу студентов с моего подготовительного курса физики, которые что-то изучали за столом. «Друзья, чем занимаетесь?» — спросил я. Ответ меня удивил. Они заучивали до последней цифры таблицу постоянных, приведённую на обложке учебника [54]. Таблица наряду с двумя десятками других включала следующие постоянные:
h (постоянная Планка) = 6,626068∙10−34 м2кг/с
Число Авогадро = 6,0221415∙1023
Заряд электрона = 1,60217646∙10−19 кулона
c (скорость света) = 299 792 458 м/с
Диаметр протона = 1,724∙10−15 м
G (гравитационная постоянная) = 6,6742∙10−11 м3с−2кг−1
На других научных предметах абитуриентов натаскивают запоминать огромное количество информации. Они хорошо усваивают физику, но часто пытаются учить её тем же способом, которым учат психологию. Правда состоит в том, что физика весьма незначительно нагружает память. Я не уверен, что многие физики сумеют назвать большинство из этих постоянных даже по порядку величины.
Отсюда возникает интересный вопрос: почему численные значения этих постоянных столь неуклюжие? Почему бы им не быть простыми числами вроде 2, 5 или даже 1? Почему они всё время оказываются то слишком маленькими (постоянная Планка, заряд электрона), то слишком большими (число Авогадро, скорость света)?
С физикой ответ связан слабо, гораздо больше — с биологией. Возьмём число Авогадро. Оно выражает число молекул, содержащихся в определённом количестве газа. Каком количестве? В таком, с которым было удобно работать химикам начала девятнадцатого века; иными словами, это количество, которое помещается в колбе или другом сосуде, более или менее сопоставимом с человеком по размерам. Фактическое значение числа Авогадро больше связано с числом молекул в теле человека, чем с глубокими физическими принципами [55].
Ещё один пример — диаметр протона. Почему он так мал? И вновь ключ к ответу в человеческой психологии. Численное значение в таблице выражено в метрах, но что такое метр? Это принятый в метрической системе единиц аналог английского ярда, который связан с расстоянием от носа до кончика пальца вытянутой руки. Очень вероятно, что это удобная единица для измерения ткани или верёвки. Малость протона говорит лишь о том, что нужно очень много протонов, чтобы составить человеческую руку. С точки зрения фундаментальной физики в этом числе нет ничего особенного.
Так почему бы нам не изменить единицы, чтобы эти числа стало проще запоминать? На практике часто так и делается. Например, в астрономии, где для измерения длины используется световой год. (Ненавижу, когда световой год ошибочно используют в качестве единицы времени: «Эгей! Целый световой год прошёл, как мы с тобой не виделись!») Скорость света не так велика, если выразить её в световых годах в секунду. На самом деле она очень мала — всего около 3∙10−8. Но что, если также заменить единицу времени и вместо секунды взять год? Поскольку свет тратит ровно один год на то, чтобы пройти один световой год, скорость света составит один световой год в год.
Скорость света — одна из фундаментальных величин в физике, так что есть смысл использовать такие единицы, в которых она равна единице. Но вот, скажем, радиус протона — вещь не особо фундаментальная. Протоны — сложные объекты, состоящие из кварков и других частиц, так зачем предоставлять им почётное первое место? Гораздо осмысленнее выбрать константы, которые управляют глубочайшими и самыми универсальными законами физики. Нет больших разногласий, какие именно это законы.
♦ Максимальная скорость любого объекта во Вселенной равна скорости света c. Этот предел скорости — закон не только для света, но для всего в природе.
♦ Все объекты во Вселенной притягивают друг друга с силой, пропорциональной произведению их масс и гравитационной постоянной G. «Все объекты» означает все объекты без исключения.
♦ Для любого объекта во Вселенной произведение его массы на неопределённости положения и скорости никогда не бывает меньше постоянной Планка h.
Курсив здесь подчёркивает всеобщий характер данных законов. Они применимы ко всем объектам вместе и к каждому в отдельности — ко всему сущему. Эти три закона природы действительно заслуживают того, чтобы их называли универсальными, — в куда большей мере, чем законы ядерной физики или свойства конкретных частиц вроде протона. Это может казаться тривиальным, но одно из самых глубоких озарений относительно структуры физики снизошло на Макса Планка, когда в 1900 году он понял, что можно так выбрать единицы длины, массы и времени, что сделать все три фундаментальные постоянные — c, G и h — равными единице.
Фундаментальный масштаб — это планковская единица длины. Она намного меньше метра и даже диаметра протона. В действительности она примерно в сто миллиардов миллиардов раз меньше протона (в метрах это примерно 10−35). Даже если протон увеличить до размеров Солнечной системы, планковская длина будет не больше вируса. Нетленная заслуга Планка в том, что он догадался: этот невозможно крошечный размер должен играть фундаментальную роль в любой окончательной теории физического мира. Планк не знал, что это будет за роль, но он понял, что наименьшие строительные блоки материи будут «планковского размера».
Единица времени, которая потребовалась Планку, чтобы сделать c, G и h равными единице, тоже оказалась чрезвычайно малой, а именно 10−42 секунды, — время, которое требуется свету, чтобы пройти одну планковскую длину.
Наконец, существует планковская единица массы. Учитывая, что планковская длина и планковское время столь невероятно малы (в обыденных, биоориентированных единицах), было бы естественно ожидать, что планковская единица массы окажется много меньше массы любого обычного объекта. Но тут-то вы и ошибётесь. Оказывается, самая фундаментальная единица массы в физике не так уж страшно мала по биологическим меркам и составляет массу примерно десяти миллионов бактерий. Это примерно равно массе мельчайшего объекта, ещё различимого невооружённым глазом, пылинки например.