Эволюция физики
Эволюция физики читать книгу онлайн
Книга Альберта Эйнштейна и Леопольда Инфельда знакомит читателя с развитием основных идей физики. В книге даётся «представление о вечной борьбе изобретательного человеческого разума за более полное понимание законов, управляющих физическими явлениями», в ней показано, как каждая последующая, уточнённая картина мира закономерно сменяет предыдущую. Книга отражает известную среди специалистов эйнштейновскую оценку задач современной физики и её основных тенденций развития, которые в конечном счёте ведут к созданию единой физической теории. Мастерское изложение делает книгу А. Эйнштейна и Л. Инфельда доступной и для неспециалистов. Книга переведена на многие языки мира, неоднократно переиздавалась и переиздаётся в различных странах.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Корпускулярный язык
Корпускулы, относящиеся к различным цветам, имеют одинаковую скорость в вакууме, но различные скорости в стекле.
Белый свет — это совокупность корпускул, относящихся к различным цветам, в то время как в спектрах они разделены.
Волновой язык
Лучи различных длин волн, относящиеся к различным цветам, имеют одинаковую скорость в эфире, но различные скорости в стекле.
Белый свет — это совокупность волн всех длин, в то время как в спектре они разделены.
Кажется, было бы мудрым избежать двусмысленности, происходящей из факта существования двух различных теорий одних и тех же явлений, решив в пользу одной из них после внимательного рассмотрения достоинств и недостатков каждой. Диалог между Н и Г показывает, что это нелёгкая задача. Решение с этой точки зрения было бы скорее делом вкуса, чем делом научного убеждения. Во времена Ньютона и 100 лет спустя большинство физиков предпочитало корпускулярную теорию.
История вынесла свой приговор в пользу волновой теории и против корпускулярной гораздо позднее, в середине XIX столетия. Н в своём разговоре с Г заявлял, что в принципе возможно было экспериментальное решение спора между обеими теориями. Корпускулярная теория не разрешает свету огибать препятствия и требует наличия чётких теней. Согласно же волновой теории, достаточно малые препятствия не будут отбрасывать никакой тени. В работах Юнга и Френеля этот результат был получен экспериментально; там же были сделаны теоретические выводы.
Мы уже обсуждали чрезвычайно простой эксперимент, в котором экран с отверстием помещался перед точечным источником света, а тень отбрасывалась на стену. В дальнейшем мы упростим эксперимент, полагая, что источник испускает однородный свет. Для получения наилучших результатов источник света должен быть сильным. Представим себе, что отверстие в экране делается всё меньше и меньше. Если в нашем распоряжении есть сильный источник и нам удаётся сделать отверстие достаточно малым, то обнаруживаются новые и удивительные явления, совершенно непонятные с точки зрения корпускулярной теории. Нет больше резкого различия между светом и темнотой. Свет постепенно блёкнет, переходя в тёмный фон через серию светлых и тёмных колец. Появление колец очень характерно для волновой теории. Объяснение чередования светлых и тёмных полос будет ясно в случае несколько иной экспериментальной установки. Предположим, что мы имеем лист чёрной бумаги с двумя булавочными дырочками, через которые может проходить свет. Если дырочки близко примыкают друг к другу и очень малы и если однородный свет достаточно силён, то на стене появится множество светлых и тёмных полос, постепенно ослабевающих и переходящих в тёмный фон. Объяснение очень простое. Тёмная полоса появляется там, где впадина волны от одной дырочки встречается с гребнем волны от другой, так что обе погашаются. Полоса света — там, где встречаются две впадины или два гребня от волн, идущих от обеих дырочек, и усиливают друг друга. Сложнее объяснение тёмных и светлых колец в предыдущем примере, в котором мы применяли экран с одним отверстием, но принципиально оно то же самое. Это появление тёмных и светлых полос при прохождении света через две щели и тёмных и светлых колец при прохождении отверстия следует иметь в виду, ибо позднее мы вернёмся к обсуждению обеих различных картин. Описанные здесь эксперименты обнаруживают дифракцию света — отклонение света от прямолинейного распространения, когда на пути световых волн расположены малые отверстия или препятствия (рис. 45–47).
Рис. 45. Вверху мы видим фотографию световых пятен, после того как два луча прошли через два маленьких отверстия, один за другим (сначала была открыта одна щель; затем она закрывалась, а другая открывалась). Внизу мы видим полосы, полученные в результате того, что луч прошёл через оба маленьких отверстия одновременно (фотография В. Аркадьева)
Рис. 46. Дифракция света в результате огибания лучом очень малого препятствия (Фотография В. Аркадьева)
Рис. 47. Дифракция света в результате прохождения луча через очень малое отверстие (Фотография В. Аркадьева)
С помощью математики мы в состоянии пойти гораздо дальше. Можно установить, как велика, вернее, как мала должна быть длина волны, чтобы создать дифракционную картину. Таким образом, описанные эксперименты позволяют нам определить длину волны однородного света. Чтобы дать представление о том, как малы эти величины, мы укажем длины волн крайних лучей видимого солнечного спектра, т. е. длины волн красного и фиолетового лучей. Длина волны красного света равна 0,00008 см. Длина волны фиолетового света равна 0,00004 см.
Мы не должны удивляться, что эти величины очень малы. Точно очерченная тень, т. е. явление прямолинейного распространения света, наблюдается в природе лишь потому, что обычно встречающиеся отверстия и препятствия чрезвычайно велики по сравнению с длиной волны света. Свою волновую природу свет обнаруживает лишь тогда, когда применяются очень малые отверстия и препятствия.
Но история поисков теории света никоим образом не окончена. Приговор XIX столетия не был последним и окончательным. Для современных физиков вся проблема выбора между корпускулами и волнами существует вновь, теперь уже в гораздо более глубокой и сложной форме. Примем поражение корпускулярной теории света до тех пор, пока мы не обнаружим, что характер победы волновой теории проблематичен.
Продольны или поперечны световые волны?
Все рассмотренные нами оптические явления говорят в пользу волновой теории. Искривление луча света у краёв малых отверстий и препятствий и объяснение преломления — это самые сильные аргументы в её пользу. Руководствуясь механистической точкой зрения, мы признаём, что остаётся ещё один вопрос, на который следует ответить: определение механических свойств эфира. Для решения этой проблемы существенно знать, продольны или поперечны световые волны в эфире. Другими словами, распространяется ли свет подобно звуку? Вызвана ли волна изменением плотности среды, т. е. совершаются ли колебания частиц в направлении распространения? Или эфир похож на упругий студень — на среду, в которой могут распространяться лишь поперечные волны и в которой частицы движутся в направлении, перпендикулярном к направлению распространения самих волн?
Прежде чем решить эту проблему, попробуем определить, какой ответ следует предпочесть. Очевидно, мы должны были бы радоваться, если бы световые волны оказались продольными. В этом случае трудности в описании механического эфира были бы не так велики. Картина строения эфира могла бы, вероятно, быть чем-то вроде механической картины строения газа, которая объясняет распространение звуковых волн. Было бы гораздо труднее создать картину строения эфира, передающего поперечные волны. Представить себе среду в виде студня или желе, построенную из частиц таким образом, что через неё распространяются поперечные волны, — это нелёгкая задача. Гюйгенс был убеждён, что эфир скорее окажется «воздухообразным», чем «желеобразным». Но природа очень мало внимания обращает на наши трудности. Была ли природа в этом случае милосердна к попыткам физиков понять все явления с механистической точки зрения? Чтобы ответить на этот вопрос, мы должны обсудить некоторые новые эксперименты.
Мы рассмотрим подробно лишь один из многих экспериментов, который в состоянии дать нам ответ. Предположим, что мы имеем очень тонкую пластинку из турмалинового кристалла, вырезанную особым образом, в описании которого здесь нет необходимости. Пластинка кристалла должна быть настолько тонка, чтобы можно было видеть сквозь неё источник света. Возьмём теперь две такие пластинки и поместим их между глазами и источником света (рис. 48). Что мы увидим? Опять световую точку, если пластинки достаточно тонки. Очень велики шансы на то, что эксперимент подтвердит наши ожидания. Не задаваясь целью установить, каковы эти шансы, допустим, что мы уже видим световую точку через оба кристалла. Будем теперь постепенно изменять положение одного кристалла, поворачивая его. Это предложение будет иметь смысл лишь в том случае, если положение оси, вокруг которой происходит вращение, фиксировано. Мы возьмём в качестве оси линию, определяемую проходящим лучом.