Эволюция физики
Эволюция физики читать книгу онлайн
Книга Альберта Эйнштейна и Леопольда Инфельда знакомит читателя с развитием основных идей физики. В книге даётся «представление о вечной борьбе изобретательного человеческого разума за более полное понимание законов, управляющих физическими явлениями», в ней показано, как каждая последующая, уточнённая картина мира закономерно сменяет предыдущую. Книга отражает известную среди специалистов эйнштейновскую оценку задач современной физики и её основных тенденций развития, которые в конечном счёте ведут к созданию единой физической теории. Мастерское изложение делает книгу А. Эйнштейна и Л. Инфельда доступной и для неспециалистов. Книга переведена на многие языки мира, неоднократно переиздавалась и переиздаётся в различных странах.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Н: В корпускулярной теории скорость света имеет вполне определённый смысл. Это скорость, с которой корпускулы движутся в пустом пространстве. Что она означает в волновой теории?
Г: Конечно, она означает скорость световой волны. Всякому известно, что волна распространяется с некоторой определённой скоростью, и то же должно быть с волнами света.
Н: Это не так просто, как кажется. Звуковые волны распространяются в воздухе, морские волны — в воде. Каждая волна должна иметь материальную среду, в которой она распространяется. Но свет проходит через вакуум, в то время как звук не проходит. Предположить волну в пустом пространстве фактически означает вовсе не предполагать никакой волны.
Г: Да, это трудность, хотя и не новая для меня. Мой учитель изучал её очень внимательно и решил, что единственный выход — предположить существование гипотетической субстанции, эфира, передающей среды, заполняющей всю Вселенную. Вселенная, так сказать, погружена в эфир. Если у нас есть смелость ввести это понятие, то всё становится ясным.
Н: Но я возражаю против такого предположения. Во-первых, оно вводит новую гипотетическую субстанцию, а мы уже имеем слишком много субстанций в физике. Имеется также и другой довод против него. Вы не сомневаетесь в том, что мы должны всё объяснять, оставаясь в пределах механики. А как относительно эфира? В состоянии ли вы ответить на простой вопрос о том, как эфир построен из своих элементарных частиц и как он обнаруживается в других явлениях?
Г: Ваше первое возражение, конечно, справедливо. Но, вводя некий искусственный невесомый эфир, мы сразу освобождаемся от гораздо более искусственных световых корпускул. Мы имеем только одну «таинственную» субстанцию вместо бесконечного числа их, соответствующего огромному числу цветов в спектре. Не кажется ли вам, что это и есть настоящий прогресс? По крайней мере, все трудности сконцентрированы в одном пункте. Мы не нуждаемся больше в искусственном предположении, что частицы, относящиеся к различным цветам, движутся с одной и той же скоростью в пустом пространстве.
Ваше второе возражение тоже справедливо. Мы не можем дать механического объяснения эфира. Но нет никакого сомнения в том, что дальнейшее изучение оптических и, может быть, других явлений обнаружит его структуру. В настоящее время мы должны ожидать новых экспериментов и заключений, но я надеюсь, что в конце концов мы сможем разрешить проблему о механической структуре эфира.
Н: Оставим на время этот вопрос, так как он не может быть разрешён теперь. Мне хотелось бы видеть, как ваша теория, даже если мы отбросим трудности, объясняет те явления, которые так ясны и понятны в корпускулярной теории. Возьмём, например, тот факт, что световые лучи проходят в вакууме или в воздухе вдоль прямых. Кусок бумаги, помещённый перед свечой, создаёт чёткую и резко очерченную тень на стене. Резкие тени были бы невозможны, если бы волновая теория была правильна, ибо волны огибали бы края бумаги и тем самым размазывали бы тень. Маленькое судно не является препятствием для морских волн, как вы знаете; они просто огибают его, не отбрасывая тени.
Г: Это неубедительный довод. Возьмите короткие волны на реке, ударяющие о борт большого корабля. Волны, возникающие на одной стороне корабля, не будут видны на другой. Если волны достаточно малы, а корабль достаточно велик, появляется очень чёткая тень. Очень возможно, что свет кажется нам проходящим по прямым линиям лишь потому, что его длина волны очень мала в сравнении с размерами обычных препятствий и отверстий, употребляемых в экспериментах. Возможно, что, если бы мы могли создать достаточно малые препятствия, никакой тени не было бы. Мы можем встретиться с большими экспериментальными трудностями в конструировании приборов, которые могли бы показать, в состоянии ли свет огибать препятствия. Тем не менее, если бы такой эксперимент можно было осуществить, он был бы решающим в борьбе между волновой и корпускулярной теориями света.
Н: Волновая теория может привести к новым фактам в будущем, но я не знаю каких-либо данных, убедительно её подтверждающих. Пока с определённостью не доказано экспериментально, что свет может огибать препятствия, я не вижу какого-либо основания отказываться от корпускулярной теории, которая кажется мне проще и потому лучше, чем волновая.
На этом мы можем прервать диалог, хотя предмет его никоим образом не исчерпан.
Остаётся ещё показать, как волновая теория объясняет преломление света и многообразие цветов. Как мы знаем, корпускулярная теория в состоянии дать такое объяснение. Мы начнём с преломления, но сначала будет полезно рассмотреть пример, не имеющий ничего общего с оптикой.
Пусть по большому открытому пространству прогуливаются два человека, держащие между собой твёрдый прут. Вначале они идут прямо вперёд, оба с одинаковой скоростью. Пока их скорости одинаковы, велики они или малы — безразлично, прут будет совершать параллельное перемещение, т. е. он не будет поворачиваться или изменять своё направление. Все последовательные положения прута параллельны друг другу. Но представим себе теперь, что в течение очень короткого времени, может быть равного долям секунды, движения обоих людей стали неодинаковыми. Что произойдёт? Ясно, что в течение этого времени прут будет поворачиваться, так что он не будет больше перемещаться параллельно своему первоначальному положению. Когда опять возобновится движение с равными скоростями, оно будет иметь направление, отличное от первоначального (рис. 43.) Изменение направления происходит в течение того промежутка времени, в котором скорость обоих пешеходов была различной.
Рис. 43
Этот пример позволит нам понять преломление волны. Плоскость волны, движущейся в эфире, достигает поверхности стекла. На рис. 44 мы видим волну со сравнительно широким фронтом, который перемещается вперёд. Фронт волны — это плоскость, в которой в любой момент времени все части эфира находятся в одинаковом состоянии. Так как скорость зависит от среды, через которую в данный момент времени проходит свет, то скорость в стекле будет отличаться от скорости в пустом пространстве. В течение очень короткого времени, за которое фронт волны входит в стекло, различные части фронта волны будут иметь различные скорости. Ясно, что те части, которые уже достигли стекла, будут двигаться со скоростью света в стекле, в то время как другие части по-прежнему движутся со скоростью света в эфире. Благодаря этой разности в скоростях вдоль фронта волны, существующей в течение времени «погружения» в стекло, направление самой волны будет изменяться.
Рис. 44
Итак, мы видим, что не только корпускулярная, но и волновая теория приводит к объяснению преломления. Дальнейшее рассмотрение и некоторое применение математики показывают, что объяснение волновой теории проще и лучше и что следствия из неё находятся в полном согласии с наблюдением. В самом деле, количественные методы рассмотрения позволяют нам вывести скорость света в преломляющей среде, если мы знаем, как преломляется луч, когда он входит в неё. Прямые измерения блестяще подтверждают эти предсказания, а тем самым и волновую теорию света.
Остаётся ещё вопрос о цвете.
Необходимо вспомнить, что волна характеризуется двумя числами — скоростью и длиной волны. Весьма существенным является следующее утверждение волновой теории света: волны различной длины соответствуют различным цветам. Длина волны однородного жёлтого света отлична от длины волны синего или фиолетового. Вместо искусственного разделения корпускул, относящихся к разным цветам, мы имеем естественное различие по длине волны.
Отсюда следует, что эксперименты Ньютона по дисперсии света могут быть описаны двумя различными языками — языком корпускулярной теории и языком волновой теории. Например: