-->

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

На нашем литературном портале можно бесплатно читать книгу Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории, Грин Брайан-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории
Название: Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории
Дата добавления: 15 январь 2020
Количество просмотров: 303
Читать онлайн

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории читать книгу онлайн

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - читать бесплатно онлайн , автор Грин Брайан

Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы–Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.

Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому. Брайан Грин срывает завесу тайны с теории струн, чтобы представить миру 11-мерную Вселенную, в которой ткань пространства рвётся и восстанавливается, а вся материя порождена вибрациями микроскопических струн.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

22

Robert P. Crease and Charles C. Mann, «The Second Creation». New Brunswick, N. J.: Rutgers University Press, 1996, p. 39.

23

К большому удивлению учёных, недавние тщательные исследования скорости расширения Вселенной показали, что в неё может давать вклад очень небольшая, но ненулевая космологическая постоянная.

24

Richard Feynman, «The Character of Physical Law». Cambridge, Mass.: MIT Press, 1965, p. 129. (Рус. пер.: Фейнман Р. «Характер физических законов». М.: Мир, 1968.)

25

Хотя работа Планка разрешила загадку бесконечной энергии, по всей видимости, не эта загадка была непосредственной причиной, побудившей его к этому исследованию. Планк пытался решить другую, очень близкую проблему, связанную с экспериментальными данными, описывающими распределение энергии в духовке (или, если быть более точным, в «чёрном теле») по длинам волн. Дополнительные сведения по истории этих работ интересующийся читатель может найти в книге Thomas S. Kuhn, «Black-Body Theory and the Quantum Discontinuity», 1894–1912. Oxford, Eng.: Clarendon, 1978.

26

Более точно, Планк показал, что волны, минимальная энергия которых превышает их ожидаемый среднийэнергетический вклад (согласно термодинамике девятнадцатого века), подавляются по экспоненциальному закону. Степень подавления резко увеличивается с увеличением частоты.

27

Постоянная Планка равна 1,05 × 10 −27(г ∙ см 2)/с.

28

Timothy Ferris, «Coming of Age in the Milky Way». New York: Anchor, 1989, p. 286.

29

Стивен Хокинг. Доклад на Амстердамском симпозиуме по гравитации, чёрным дырам и теории струн, 21 июня 1997 г.

30

Следует отметить, что с помощью фейнмановского подхода к квантовой механике можно вывести подход, основанный на волновых функциях, и наоборот; следовательно, эти два подхода полностью эквивалентны. Однако концепции, терминология и интерпретация, даваемая каждым из этих подходов, различаются очень сильно, несмотря на то, что решения, которые они дают, тождественны.

31

Richard Feynman, «QED: The Strange Theory of Light and Matter». Princeton: Princeton University Press, 1988. (Рус. пер.: Фейнман Р. «Квантовая электродинамика: странная теория света и материи». М.: Наука, 1988 (Библиотечка «Квант». Вып. 66).)

32

Stephen Hawking, «A Brief History of Time». New York: Bantam Books, 1988, p. 175. (Рус. пер.: Хокинг С. «От Большого взрыва до чёрных дыр». М.: Мир, 1998.)

33

Цитируется по книге: Timothy Ferris, «The Whole Shebang». New York: Simon & Schuster, 1997, p. 97.

34

Если вы всё ещё озабочены тем, как вообще что-либо может происходить в пустом пространстве, вы должны понять, что соотношение неопределённостей накладывает ограничения на то, насколько «пустой» может в действительности быть область в пространстве; оно изменяет наше понимание пустого пространства. Например, применительно к волновым возмущениям поля (таким, как электромагнитные волны, распространяющиеся в электромагнитном поле) соотношение неопределённостей утверждает, что амплитуда волны и скорость изменения амплитуды связаны тем же самым отношением обратной пропорциональности, которое выполняется для положения частицы и её скорости. Чем точнее указана амплитуда, тем менее точно мы знаем скорость, с которой она изменяется. Когда мы говорим, что область в пространстве является пустой, мы обычно имеем в виду, что, помимо всего прочего, в ней не распространяются волны и что все поля имеют нулевую интенсивность. Пользуясь грубым, но очень наглядным языком, можно перефразировать данное выражение, сказав, что амплитуды всех волн, проходящих через данную область, в точности равны нулю. Однако если амплитуды точно известны, то согласно соотношению неопределённостей это означает, что скорость изменения амплитуды является совершенно неопределённой и может принимать любое значение. Но если амплитуда изменяется, это означает, что в следующий момент она уже не может быть нулевой, даже несмотря на то, что область пространства по-прежнему остаётся «пустой». Опять же, в среднемполе будетнулевым, поскольку в одних областях оно будет принимать положительные значения, а в других — отрицательные; средняя суммарная энергия области не изменится. Но это верно только в среднем. Квантовая неопределённость предполагает, что энергия поля (даже в пустой области пространства) флуктуирует от бо́льших значений к меньшим. При этом амплитуда флуктуаций увеличивается по мере уменьшения расстояний и промежутков времени, в которых исследуется эта область. Согласно формуле E= mc 2энергия, заключённая в таких кратковременных флуктуациях, может быть преобразована в массу путём мгновенного образования пары, состоящей из частицы и соответствующей античастицы, которые затем быстро аннигилируют, чтобы сохранить средний баланс энергии.

35

Даже несмотря на то, что первоначальное уравнение Шрёдингера (то, в котором учитывалась специальная теория относительности) не давало точного описания квантово-механических характеристик электронов в атомах водорода, учёные вскоре поняли, что это ценный инструмент при использовании в надлежащем контексте, который и сегодня ещё не вышел из употребления. Однако к тому времени, как Шрёдингер опубликовал своё уравнение, его опередили Оскар Клейн и Уолтер Гордон, поэтому его релятивистское уравнение носит название уравнения «Клейна–Гордона».

36

Для математически подготовленного читателя заметим, что принципы симметрии, используемые в физике элементарных частиц, обычно основаны на группах, чаще всего на группах Ли. Элементарные частицы систематизируются по представлениям различных групп; уравнения, описывающие эволюцию частиц во времени, должны удовлетворять соответствующим преобразованиям симметрии. Для сильного взаимодействия такой группой симметрии является группа SU(3) (аналог обычных трёхмерных вращений, но в комплексном пространстве), при этом три цветовых заряда кварка заданного типа преобразуются по трёхмерному представлению. Смещение (от красного, зелёного, синего к жёлтому, индиго и фиолетовому), которое упомянуто в тексте, если быть более точным, представляет собой SU(3) преобразование, применённое к «цветовым координатам» кварка. Калибровочной является симметрия, в которой групповые преобразования могут зависеть от точек пространства-времени: в этом случае «вращение» цветов кварка будет происходить по-разному в различных точках пространства и в различные моменты времени.

37

При разработке квантовых теорий трёх негравитационных взаимодействий физики также столкнулись с вычислениями, которые приводили к бесконечным результатам. Однако со временем учёные осознали, что от бесконечностей можно избавиться с помощью процедуры, известной как перенормировка. Бесконечности, возникающие при попытках объединить общую теорию относительности и квантовую механику, являются гораздо более серьёзными, от них нельзя избавиться с помощью перенормировки. Позднее стало ясно, что бесконечные результаты сигнализируют о том, что теория используется за пределами области своей применимости. Поскольку цель исследований — «окончательная» или «последняя» теория, область применимости которой в принципе не ограничена, физики ищут теорию, в ответах которой не появлялись бы бесконечные величины, независимо от того, насколько экстремальной является анализируемая физическая система.

Перейти на страницу:
Комментариев (0)
название