-->

Квантовая хромодинамика: Введение в теорию кварков и глюонов

На нашем литературном портале можно бесплатно читать книгу Квантовая хромодинамика: Введение в теорию кварков и глюонов, Индурайн Франсиско Хосе-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Квантовая хромодинамика: Введение в теорию кварков и глюонов
Название: Квантовая хромодинамика: Введение в теорию кварков и глюонов
Дата добавления: 16 январь 2020
Количество просмотров: 243
Читать онлайн

Квантовая хромодинамика: Введение в теорию кварков и глюонов читать книгу онлайн

Квантовая хромодинамика: Введение в теорию кварков и глюонов - читать бесплатно онлайн , автор Индурайн Франсиско Хосе

Книга испанского физика Ф. Индурайна представляет собой курс современной теории сильных взаимодействий — квантовой хромодинамики. Она содержит практически весь основной материал, необходимый для ознакомления с важнейшими результатами, полученными в рамках пертурбативной КХД, и овладения вычислительными методами теории. Материал изложен с приведением всех промежуточных выкладок и с большим педагогическим мастерством, что позволяет использовать книгу в качестве учебного или справочного пособия. Книга предназначена для научных работников, студентов и аспирантов физических факультетов, специализирующихся в области физики элементарных частиц.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

1

2

a,λ

G

a

μλ

G

a

νλ

-

G

̃

a

μλ

G

̃

a

νλ

,

(43.6)

которое в случае дуальных полевых конфигураций обращается в нуль: μν=0. Таким образом, дуальные поля G могут соответствовать нетривиальным вакуумным состояниям.

Другое свойство дуальных полей состоит в том, что они должны удовлетворять условию минимума евклидова действия, для которого можно написать

Перейти на страницу:
Комментариев (0)
название