Тени разума. В поисках науки о сознании
Тени разума. В поисках науки о сознании читать книгу онлайн
Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.
Для широкого круга читателей, интересующихся наукой.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Какова же природа этих процедур обучения? Вообразим, что наша самообучающаяся система помещена в некоторое внешнее окружение, причем поведение системы внутри этого окружения непрерывно модифицируется под влиянием реакции окружения на ее предыдущие действия. В процессе участвуют, в основном, два фактора. Внешнимфактором является поведение окружения и его реакция на действия системы, а внутренним— изменения в поведении системы в ответ на изменения в окружении. Прежде всего следует решить вопрос об алгоритмической природе внешнего фактора. Может ли реакция внешнего окружения вносить в общую картину некую неалгоритмическую составляющую, если внутреннее устройство нашей системы обучения является целиком и полностью алгоритмическим?
В определенных обстоятельствах (как, например, часто бывает при «обучении» искусственных нейронных сетей) реакция внешнего окружения заключается в изменении поведения экспериментатора (инструктора, преподавателя — в дальнейшем предлагаю называть его просто «учителем»), изменении намеренном и предпринимаемом с целью улучшить качество функционирования системы. Когда система функционирует так, как требует учитель, ей об этом сообщают, чтобы в дальнейшем (под воздействием внутренних механизмов модификации поведения системы) она с большей вероятностью функционировала бы именно таким образом. Предположим, например, что у нас имеется искусственная нейронная сеть, которую необходимо научить распознавать человеческие лица. Мы непрерывно наблюдаем за функционированием нашей системы и после каждого рабочего цикла снабжаем ее данными о правильности ее последних «догадок» для того, чтобы она могла улучшить качество своей работы, модифицировав нужным образом внутреннюю структуру. На практике, за адекватностью результатов каждого рабочего цикла совсем не обязательно должен наблюдать учитель-человек, так как процедуру обучения можно в значительной степени автоматизировать. В описанной ситуации цели и суждения учителя-человека образуют наивысший критерий качества функционирования системы. В других ситуациях реакция окружения может оказаться не столь «преднамеренной». Например, в процессе развития живыхсистем — предполагается, что эти системы все же функционируют в соответствии с некоторой нейронной схемой (или иной алгоритмической процедурой, например, генетическим алгоритмом, см. §3.7), вроде тех, что применяются в численном моделировании — в подобных внешних целях или суждениях вообще не возникает необходимости. Вместо этого, живые системы модифицируют свое поведение в процессе, который можно рассматривать как своего рода естественный отбор, действуя согласно критериям, эволюционировавшим на протяжении многих лет и способствующим увеличению шансов на выживание как самой системы, так и ее потомства.
3.10. Может ли окружение вносить неалгоритмический внешний фактор?
Выше мы предположили, что сама наша система (независимо от того, живая она или нет) представляет собой нечто вроде роботас компьютерным управлением, т.е. все ее самомодификационные процедуры являются целиком вычислительными. (Я пользуюсь здесь термином «робот» исключительно для того, чтобы подчеркнуть то обстоятельство, что нашу систему следует рассматривать как некую самостоятельную, целиком и полностью вычислительную сущность, находящуюся во взаимодействии со своим окружением. Я вовсе не подразумеваю, что она непременно представляет собой какое бы то ни было механическое устройство, целенаправленно сконструированное человеком. Такой системой, если верить Aили B, может оказаться развивающееся человеческое существо, а может и в самом деле какой-то искусственно созданный объект.) Итак, мы полагаем, что внутреннийфактор является полностью вычислительным. Необходимо установить, является ли вычислительным также и внешнийфактор, вносимый окружением, — иначе говоря, возможно ли построить эффективную численную модель этого самого окружения как в искусственном(т.е. когда окружение неким искусственным образом контролируется учителем-человеком), так и в естественномслучае (когда высшим авторитетом является давление естественного отбора). В каждом случае конкретные внутренние правила, в соответствии с которыми система обучения робота модифицирует его поведение, должны быть составлены так, чтобы тем или иным образом реагировать на конкретные сигналы, посредством которых окружение будет сообщать системе о том, как следует оценивать качество ее функционирования в предыдущем рабочем цикле.
Вопрос о возможности моделирования окружения в искусственном случае (иными словами, о возможности численного моделирования поведения человека-учителя) представляет собой тот самый общий вопрос, ответ на который мы пытаемся найти вот уже в который раз. В рамках гипотез Aили B, следствия из которых мы рассматриваем в настоящий момент, допускается, что эффективное моделирование в этом случае и в самом деле возможно, по крайней мере, в принципе. В конце концов, цель нашего исследования состоит именно в выяснении общего правдоподобия этого допущения. Поэтому, вместе с допущением о вычислительной природе нашего робота, допустим также, что его окружение также вычислимо. В результате мы получаем объединеннуюсистему, состоящую из робота и его обучающего окружения, которая, в принципе, допускает эффективное численное моделирование, т.е. окружение не дает никаких потенциальных оправданий невычислительному поведению вычислительного робота.
Иногда можно услышать утверждение, что нашим преимуществом перед компьютерами мы обязаны тому факту, что люди образуют сообщество, внутри которого происходит непрерывное общение между индивидуумами. Согласно этому утверждению, отдельного человека можно рассматривать как вычислительную систему, тогда как сообщество людей представляет собой уже нечто большее. То же относится и, в частности, к математическому сообществу и отдельным математикам — сообщество может вести себя невычислительным образом, в то время как отдельные математики такой способностью не обладают. На мой взгляд, это утверждение лишено всякого смысла. В самом деле, представьте себе аналогичное сообщество непрерывно общающихся между собой компьютеров. Подобное «сообщество» в целом является точно такой же вычислительной системой; деятельность его, если есть такое желание, можно смоделировать и на одном-единственном компьютере. Разумеется, вследствие одного только количественного превосходства, сообщество составит гораздо более мощную вычислительную систему, нежели каждый из индивидуумов в отдельности, однако принципиальнойразницы между ними нет. Известно, что на нашей планете проживает более 5 × 10 9человек (прибавьте к этому еще огромные библиотеки накопленного знания). Цифры впечатляют, но это всего лишь цифры — если отдельного человека считать вычислительным устройством, то разницу, обусловленную переходом от индивидуума к сообществу, развитие компьютерных технологий сможет при необходимости свести на нет в течение каких-нибудь нескольких десятилетий. Очевидно, что искусственный случай с учителями-людьми в роли внешнего окружения не дает нам ничего принципиально нового, что могло бы объяснить, каким образом из целиком и полностью вычислительных составляющих возникает абсолютно невычислимая сущность.
Что же мы имеем в естественном случае? Вопрос теперь звучит так: может ли физическое окружение (если не учитывать действий присутствующих в нем учителей-людей) содержать компоненты, которые невозможно даже в принципе смоделировать численными методами? Мне думается, что если кто-то полагает, что в «бесчеловечном» окружении может присутствовать нечто, принципиально не поддающееся численному моделированию, то этот кто-то тем самым лишает силы главное возражение против C. Ибо единственной разумной причиной усомниться в возможной справедливости точки зрения Cможно счесть лишь скептическое отношение к утверждению, что объекты, принадлежащие реальному физическому миру могут вести себя каким-то невычислимым образом. Как только мы признаём, что какой-либофизический процесс может оказаться невычислимым, у нас не остается никакого права отказывать в невычислимости и процессам, протекающим внутри такого физического объекта, как мозг, — равно как и возражать против C. Как бы то ни было, крайне маловероятно, что в безлюдном окружении может обнаружиться нечто такое, что не поддается вычислению столь же фундаментально, как это делают некоторые процессы внутри человеческого тела. (См. также §§1.9и 2.6, Q2.) Думаю, мало кто всерьез полагает, что среди всего, что имеет хоть какое-то отношение к окружению самообучающегося робота, может оказаться что-либо, принципиальноневычислимое.