Хаос и структура
Хаос и структура читать книгу онлайн
"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число. "Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
«Но, согласно господствующим теперь в физике и химии взглядам, земные массы, тела, служащие объектами механики, состоят из молекул, из мельчайших частиц, которые нельзя делить дальше, не уничтожая физического и химического тождества рассматриваемого тела. Согласно вычислениям В. Томсона, диаметр наименьшей из этих молекул не может быть меньше одной пятидесятимиллионной доли миллиметра. Допустим также, что наибольшая молекула имеет диаметр в одну двадцатипятимиллионную долю миллиметра. В таком случае это все еще ничтожно малая величина по сравнению с теми наименьшими массами, с которыми оперируют механика, физика и даже химия. Между тем она обладает всеми присущими соответственной массе свойствами; она может представлять в физическом и химическом отношении эту массу и действительно представляет ее во всех химических уравнениях. Короче говоря, она обладает по отношению к соответствующей массе теми же самыми свойствами, какими обладает математический дифференциал по отношению к своей переменной, с той лишь разницей, что то, что в случае дифференциала в математической абстракции кажется нам таинственным и непонятным, здесь становится само собой разумеющимся и, так сказать, очевидным.
Природа оперирует этими дифференциалами, молекулами точно таким же образом и по точно таким же законам, как математика оперирует своими абстрактными дифференциалами. Так, например, дифференциал от х 3будет 3x 2dx, причем мы пренебрегаем 3xdx 2и dx . Если мы сделаем соответственное геометрическое построение, то мы получим куб, длина стороны которого х, причем длина эта увеличивается на бесконечно–малую величину dx. Допустим, что этот куб состоит из какого–нибудь возгоночного вещества, скажем из серы; допустим, что три прилегающие к одной вершине поверхности защищены, а другие три свободны. Поместим этот серный куб в атмосферу из серного газа и понизим температуру последней надлежащим образом; в таком случае серный газ начнет осаждаться на трех свободных гранях нашего куба. Мы не пойдем вразрез с опытными данными физики и химии, если, желая представить себе этот процесс в его чистом виде, мы допустим, что на каждой из этих трех граней осаждается прежде всего слой толщиной в одну молекулу. Длина стороны куба увеличилась на диаметр одной молекулы, на dx. Объем же куба χ 3увеличился на разницу между х 3и х 3+ 3x 2dx+Зхdx 2+dx 3, причем мы, подобно математике и с тем же правом, можем пренебречь dx 3, т. е. одной молекулой, и 3xdx 2, тремя рядами линейно расположенных друг около друга молекул длиной в dx. Результат одинаков: приращение массы куба равно 3x 2dx.
Строго говоря, у серного куба dx 3и 3xdx 2не бывает, ибо две или три молекулы не могут находиться в том же пространстве, и прирост его массы точно равен поэтому 3x 2dx+3xdx+dx. Это находит себе объяснение в том, что в математике dx есть линейная величина, но таких линий, не имеющих толщины и ширины, в природе самостоятельно, как известно, не существует, а следовательно, математические абстракции только в чистой математике имеют безусловную значимость. А так как и она пренебрегает 3xdx 2+dx 3, то это не имеет значения.
То же самое можно сказать и об испарении. Если в стакане воды происходит испарение верхнего слоя молекул, то высота слоя воды уменьшается на dx, и продолжающееся улетучивание одного слоя молекул за другим фактически есть продолжающееся дифференцирование. А если под влиянием давления и охлаждения пар в каком–нибудь сосуде сгущается, превращаясь в воду, и один слой молекул отлагается на другом (причем мы отвлекаемся от усложняющих процесс побочных обстоятельств), пока сосуд не заполняется, то перед нами здесь буквально происходит интегрирование, отличающееся от математического интегрирования лишь тем, что одно совершается сознательно, человеческой головой, а другое—бессознательно, природой. Но процессы, совершенно аналогичные процессам исчисления бесконечно–малых, происходят не только при переходе из жидкого состояния в газообразное и наоборот.
Когда — благодаря толчку—движение масс уничтожается как таковое и переходит в теплоту, в движение молекулярное, то разве не происходит в этом случае дифференцирования движения масс? А когда молекулярное движение пара в цилиндре паровой машины, суммируясь, поднимает поршень на определенную высоту, переходит в движение масс, — разве это не интегрирование? Химия разлагает молекулы на атомы, имеющие меньшую массу и протяженность, но представляющие величины того же порядка, что и первые, так что молекулы и атомы находятся в определенных, конечных отношениях друг к другу. Следовательно, все химические уравнения, выражающие молекулярный состав тел, представляют собой по форме дифференциальные уравнения. Но в действительности они уже интегрированы благодаря фигурирующим в них атомным весам. Химия оперирует дифференциалами, числовое взаимоотношение которых известно.
Но атомы не считаются чем–то простым, не считаются вообще мельчайшими известными нам частицами материи. Не говоря уже о химиках, которые все больше и больше склоняются к мнению, что атомы обладают сложным составом, большинство физиков утверждает, что мировой эфир, опосредствующий световые и тепловые излучения, состоит тоже из дискретных частиц, столь малых, однако, что они относятся к химическим атомам и физическим молекулам так, как эти последние к механическим массам, т. е. относятся, как d 2x к dx. Здесь, таким образом, общераспространенное представление о строении материи тоже оперирует дифференциалами второго порядка, и ничто не мешает человеку, которому бы это нравилось, вообразить себе, что в природе имеются еще аналогии d 3x, d 4x и т. д.
Но какого бы взгляда ни придерживаться относительно строения материи, факт тот, что она расчленена, представляет собою ряд больших, хорошо отграниченных групп относительной массовид–ности, так что члены каждой подобной группы находятся со стороны массы в определенных, конечных отношениях друг к другу, а к членам ближайших групп относятся как к бесконечно–большим или бесконечно–малым величинам в смысле математики. Видимая глазом система звезд, Солнечная система, земные массы, молекулы и атомы, наконец, частицы эфира образуют каждая подобную группу. Дело не меняется от того, что мы находим промежуточные звенья между отдельными группами; так, между массами Солнечной системы и земными массами мы встречаем астероиды, из которых некоторые не больше, скажем, княжества Рейсс младшей линии, метеоры и т. д.; так, между земными массами и молекулами мы встречаем в органическом мире клетку. Эти средние звенья показывают только, что в природе нет никаких скачков именно потому, что она сплошь состоит из скачков.
Поскольку математика оперирует реальными величинами, она применяет спокойно эти взгляды. Для земной механики масса Земли является бесконечно великой; в астрономии земные массы и соответствующие им метеоры рассматриваются как бесконечно малые; точно так же расстояния и массы планет Солнечной системы являются в глазах астрономии ничтожно малыми величинами, лишь только она оставляет пределы Солнечной системы и начинает изучать строение нашей звездной системы» (Энгельс. Анти–Дюринг. 1938. 275—278).
15. ИНФИНИТЕЗИМАЛbНО–ЛОГИЧЕСКИЙ СЛОВАРb
На этом мы закончим наше краткое сообщение о применении метода бесконечно–малых к логике. Вернее, это не сообщение, а только предложение, только скромный намек на ту область, которая не может не быть огромной. Логика и математика не могут настолько расходиться между собою, чтобы не иметь ничего общего в своих построениях. И во всяком случае, логика не имеет никакого права настолько отставать от математики, чтобы совершенно не иметь никакого представления о том, что сейчас творится в математике. С другой стороны, те, кто любит говорить фразы о базировании философии на науке, должны же когда–нибудь перейти от фраз к делу, если только они считают математику за науку. О несовершенствах нашего предложения нечего распространяться. Они очевидны и так. Но следует во всяком случае усвоить то, что сама категория бесконечно–малого и сам метод бесконечно–малых уж во всяком случае необходимы в логике. Они, конечно, нисколько не заменяют других методов, ибо сама же математика содержит много других, принципиально различных методов, не говоря уже о науках нематематических. Мы, однако, хотели перейти от фраз к делу по крайней мере на одной науке, да и то из этой науки взяли только один метод, чтобы применить его в логике и тем базировать философию на науке хотя бы в этом отдельном вопросе. Дело других исследователей предложить еще другие математические методы в логике и даже другие нематематические.