Хаос и структура
Хаос и структура читать книгу онлайн
"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число. "Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Одно только можно сказать с полной уверенностью: ясные и строгие достижения точных наук являются одним из наиболее эффективных принципов для построения и логики вообще и в частности структурной логики. Для разъяснения того, что такое структура и как понимать структуру с точки зрения метода бесконечно–малых, конечно, можно было бы привлечь любой материал, напр. хотя бы из художественной области, где вопросы архитектоники играют первостепенную роль. Однако тут пришлось бы еще убеждать в наличии самых этих материалов и взывать к эстетическому чувству читателей. Гораздо целесообразнее использовать вместо этого точный и строго научный материал отдельных устоявшихся наук. В органической химии не только установлен точнейшим образом самый факт структуры, но имеется подробная классификация этих структур и вообще богато разработана теория химических связей. Разве может логика пройти мимо всех этих фактов без внимания? И разве логическая структура не есть просто отражение химической (в данном случае) структуры—для той философии, по которой всякое вообще мышление есть не что иное, как отражение бытия?
Один результат мы можем формулировать с полной ответственностью, хотя по необходимости он пока очень общий: структура мышления так же погружена в непрерывную текучесть, как и все на свете, и поэтому к ней, как и ко всему, тоже приложим метод бесконечно–малых. И это уже во всяком случае так, как бы мы ни понимали самое структуру. Гарантией этого являются точные науки, и прежде всего химия, где и сама эта категория на первом плане и где уже давно поставлен вопрос о непрерывной превращаемости элементов в связи с отмеченным фактом их радиоактивности. Но конечно, это далеко не единственная наука, где так четко объединяется структурность с непрерывностью.
14. ЖИЗНЕННО–ЛОГИЧЕСКОЕ ЗНАЧЕНИЕ МАТЕМАТИЧЕСКОГО АНАЛИЗА
Именно во всех этих рассуждениях мы не должны забывать, что инфинитезимальные понятия не только просто имеют некое отношение к действительности, но что вековое развитие наук о природе доказало их совершенно неотъемлемую связь с нею. Мы их рассматривали в применении к логике, т. е. к науке о мышлении. Но бесконечно–малое есть неотъемлемое достояние реальной действительности еще и до всякого мышления и без всякого мышления. Надо иметь в виду, что и без построения логики как науки мы в нашем самом обыкновенном чувственном опыте постоянно интегрируем и дифференцируем и не можем не интегрировать, не можем не дифференцировать.
1. В самом деле, меняются ли вещи или нет, движутся или нет? Можно ли остановить непрерывное становление вещей или нельзя этого сделать? Казалось бы, на это может быть только один и совершенно недвусмысленный ответ. Но стоит только допустить, что вещи непрерывно меняются, как тотчас же возникает вопрос: а как же мы узнаем эту вещь, если она вся целиком и непрерывно меняется. Как она может оставаться тою же вещью, если мы только что признали, что она сплошь становится и меняется? Ясно, что все ее изменения мы относим к какому–то ее ядру или центру, а не просто их забываем. Мы их, несомненно, суммируем. И как же происходит это суммирование? Вовсе не так, что все слагаемые остаются твердыми и неподвижными. Эти слагаемые расплываются в целом вещи, ибо вещь мы имеем все же как такую, как единичную, из каких бы слагаемых ни складывалось ее движение. С другой стороны, могут ли все эти бесконечно–малые изменения вещи быть таковыми в ней раз навсегда и сливаться в неразличимую массу? Это тоже невозможно, так как вещи реально меняются, и мы отчетливо воспринимаем это изменение. Так что же такое в конце концов реальное восприятие реально движущейся вещи, когда ни становление не дробится на дискретные части, ни дискретные части не теряют своей значимости в том целом, что называется восприятием вещи?
Я не знаю, как тут обойтись без процесса интегрирования и дифференцирования. Возводя изменения вещи к ее целому и прослеживая, как от них нарастает это целое, мы не делаем ничего другого, как просто–напросто интегрируем вещь и интегрируем наше восприятие вещи. Ведь надо же когда–нибудь гносеологу и логику всерьез обратить внимание на то, что такое, напр., длина дуги с точки зрения интегральною исчисления. Длиной дуги кривой линии называется здесь предел периметра вписанной в нее ломаной, когда число звеньев этой последней бесконечно возрастает, а сами звенья бесконечно умаляются. Все наши отдельные, изолированные восприятия частей этой длины есть не что иное, как эти вот звенья ломаной, то большие, то маленькие. Как из них составить восприятие целой длины данной дуги? Только путем перехода к пределу через суммирование отдельных отрезков в условиях их бесконечного дробления. Но раз так, то что же это может значить иное, как [не] то, что восприятие длины всякой дуги есть интегрирование. А ведь мы же на каждом шагу в обыденной жизни судим о длине тех или иных кривых в тех или иных границах. Далее, разве можно в логике проходить мимо того, как интегральное исчисление понимает площади и объемы тел? О площади мы уже говорили. Но было бы так же просто рассказать и об объеме тела, как о некоторого рода интеграле. Разве это не значит, что воспринять объем тела можно только путем бессознательного интегрирования его элементов? С другой стороны, кто же не наблюдал скорость движения тела и не сравнивал проходимый им путь с этой скоростью? Кто не сравнивал скоростей двух или нескольких тел, движущихся одновременно? Чем мы занимаемся, идя по людной улице, как не тем, что все время оцениваем движение трамвая, автомашин, велосипедов, лошадей, пешеходов? А известно ли всем, кто занимается логикой, что скорость есть первая производная от пути по времени?
Мы всегда наблюдаем ускорение и замедление движения. А известно ли логикам, что ускорение есть вторая производная от пути по времени? Что же остается сказать после этого? Не то ли, что восприятие всякой скорости и ускорения есть бессознательное дифференцирование разных расстояний с точки зрения временного протекания тех или иных движений?
2. Вы «измерили» глазами какой–нибудь предмет—этот стол, этот стул, этот шкаф и т. д., — и даже не измерили, а просто взглянули на него. Что это значит? Это значит, что вы пробежали по нему глазами. Но что значит пробежать? Ваш пробег состоит из отдельных изолированных точек или не состоит? Пробежать не значит перечислить какие–то изолированные точки. Пробежать глазами и тем более просто взглянуть на предмет—это значит иметь обязательно непрерывное восприятие. Но что значит непрерывное восприятие? Это значит не что иное, как суммирование бесконечно–малых приращений. Ни в каком случае нельзя обойтись без этого. Или—прерывность, или—суммирование бесконечно–малых. Но допустим, что это есть суммирование бесконечно–малых восприятий, и больше ничего. Есть ли это восприятие нашего предмета? Ни в каком случае. Ведь мы же взглянули на шкаф, а не на что–то другое. Значит, мы не просто суммируем, но суммируем до каких–то пределов, суммируем по какому–то закону, суммируем в определенных направлениях. Итак, без суммирования бесконечно–малых ощущений нет непрерывности в восприятии нашего предмета, т. е. в этом случае он распадается на множество дискретных вещей, не имеющих одна к другой никакого отношения, а без предела нет данной и определенной вещи, а есть безграничное и бессмысленное накопление бесконечно–малых ощущений, т. е. тоже потеря предмета. В одном случае теряется его непрерывность, а в другом случае утрачивается его осмысленность как именно данного предмета. Но ведь предел суммы бесконечно–малых есть именно интеграл и достижение такого интеграла есть интегрирование. А это значит, что даже измерить данную вещь глазами, т. е. просто взглянуть на нее, — это уже значит интегрировать ее в точном математическом смысле слова.
В течение дня мы сплошь имеем дело с измерением или по крайней мере оценкой длин, площадей, поверхностей и объемов. Я сел за стол—это значит уже употребил какие–то оценки высоты стула и стола и сравнил обе эти высоты. Я взял в руки перо—это значит оценил объем пера и то расстояние, на котором оно до этого времени находилось от меня. Я встал, надел пальто и шапку, вышел на улицу и стал идти по улице—это значит, что я все время оцениваю длины тех кривых, по которым я иду, объемы тех тел, которые я нахожу на вешалке и на себя надеваю, те величины и размеры, которые я встречаю на улице (ширину тротуара, рост встречных людей, размеры витрин или дверей магазинов) и т. д. и т. д. Что такое все это? Все это есть сплошное интегрирование бесчисленного ряда [216]функций, сплошное интегрирование своих ощущений.