Хаос и структура
Хаос и структура читать книгу онлайн
"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число. "Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
с) В предыдущем примере необходимо также иметь в виду, что тут бесконечность есть не просто часть себя самой или целое в отношении себя самого, но еще и всякая часть оказывается в бесконечности равной целому. Именно, если от прибавления к бесконечности какого–нибудь конечного числа А сама бесконечность не меняется, то А, стало быть, есть или нуль, или то, что, окунувшись в бесконечность, расплывается в ней и вполне с ней отождествляется. Нулем А не может быть, если оно действительно А, но расплываться в бесконечности оно, несомненно, может. Для этого надо только мыслить бесконечность как алогическую стихию, в которой меркнет всякое различие. Таким образом, уже тот простой пример показывает, что бесконечность вовсе не мыслится в математике как беспредельное прибавление одной единицы к другой, но что она, даже в простейших и элементарных арифметических выкладках, трактуется как алогическое становление цельности, самотождественной во всех своих мельчайших моментах.
d) Поучителен также и другой пример, заимствованный опять–таки из элементарной арифметики:
<
=∞•Α—Α •∞ = οο>.В чем идея таких операций, «понятных» как будто бы и без всяких разъяснений, но тем не менее загадочных, несмотря на свою общеупотребительность? Стоит только поглубже вдуматься в эти математические суждения, чтобы уловить все своеобразие понятия бесконечности, ничего не имеющее общего с обычным представлением о ней как о беспредельном переходе в неизвестную даль. С первого взгляда приведенные формулы ничего особенного в себе не содержат, хотя математикам приходится буквально притворяться, что туг все благополучно с точки зрения «формальной логики». Все эти равенства предполагают, что бесконечность есть и часть себя самой, и целое в отношении себя самой. Так, в первом равенстве частное, результат деления, оказывается равным делимому, так что уже и младенцу должно быть понятно, что в бесконечности часть вполне равна целому. То же и в других формулах. Только не надо забывать, что везде в этих равенствах не только бесконечность является частью и целым в отношении себя самой (как это само собой видно и без всякой диалектики), но А, т. е. каждая отдельная часть, [тоже] является и частью, и всем целым (целым — поскольку растворяется в бесконечности и отождествляется с нею).
4. а) Однако можно и в этих равенствах все еще ухитряться выскользнуть из рамок диалектики и понимать бесконечность просто как пустое нагромождение безграничного количества единиц. Эти ухищрения уже совсем невозможны в отношении следующих равенств, и в особенности первого из них:
I ∞= A
A ∞= ∞
∞ ∞= ∞ [159]
b) Первое из этих равенств, где А является любым конечным числом, есть пример на т. н. неопределенные формы, потому что об [А ] неизвестно, что это за число (оно может быть любым). Спрашивается: если бесконечность есть непрестанное нагромождение чисел одного над другим, то почему возможно первое равенство? По самому смыслу возведения в степень мы имеем, например,
2 4= 2·2·2·2.
Следовательно, и единица в бесконечной степени должна была бы равняться
1 1·1·1·1…
причем этих единиц должно было бы быть бесконечное количество. Другими словами, тогда было бы правильно, что
1°° = 1.
Но из математики мы знаем, что единица в бесконечной степени равняется не единице, а любому конечному числу. Ясно, стало быть, что тут имеется в виду совсем не то вульгарное представление о бесконечности, которое мы отрицали, а какое–то более сложное. В чем оно заключается?
Если бесконечное помножение единицы на саму себя приводит к какому–нибудь определенному конечному числу, то это может быть только в том случае, если в употребляемой здесь бесконечности обязательно содержатся два принципа — принцип бесконечного растягивания процесса умножения и принцип определенной конечности. Бесконечность мыслится здесь как 1) алогическое становление (алогичность ясна уже из отсутствия предела для количества умножений) и как 2) конечная оформ–ленность этого становления. Стоит исключить хотя бы один из этих моментов, как вышеупомянутое равенство I ∞= А становится совершенно немыслимым. Отнесемся к такому равенству совершенно непредубежденно и попробуем сказать, что оно значит. Всякому ясно, что здесь, во–первых, мы умножаем единицу на единицу бесконечное число раз, а, во–вторых, в результате этого умножения получается увеличение единицы до определенного числа. Результат этот получается не от нашего сознательного намерения, но сам собой, силой одного только бесконечного процесса умножения единицы на самое себя. Значит, бесконечность здесь не есть унылый и монотонный ряд единиц, но некий путь, имеющий свой профиль, свою физиономию, являющийся как бы некоей кривой линией, и именно замкнутой кривой линией. Этот бесконечный путь закругляется в определенную конечную величину, и потому–то и появляется определенное конечное число А. (Заметим, что об определенном конечном числе везде тут надо говорить невзирая на то, что тут перед нами т. н. неопределенная форма, ибо, как известно, дифференциальное исчисление дает весьма простые способы раскрытия этой неопределенности.) Силою самого этого бесконечного процесса умножения единицы на единицу создается какое–нибудь конечное число (напр., 5 или 6), потому что сама бесконечность содержит в себе как бы кривизну, мешающую ей быть простой неведомой нагроможденностью, [о] которой только и можно было бы сказать, что она необозрима, и больше ничего. Не внося этих моментов в понятие бесконечности, я не знаю, как можно было бы понять равенство 1°° = Л.
с) Любопытно также и сравнение трех анализируемых нами равенств. Они представляют собою яркую градацию: единица в бесконечной степени равна какому–нибудь конечному числу; какое–нибудь (все равно какое) конечное число в бесконечной степени есть бесконечность; и, наконец, сама бесконечность в бесконечной степени тоже есть бесконечность. Когда математика утверждает первое из этих положений, она, очевидно, мыслит бесконечность в пределах конечного числа и обозначает здесь переход от единицы, т. е. от изначальной субстанции числа, к самому числу. Второе из этих положений мыслит бесконечность уже в бесконечных пределах и возводит не через промежуточную бесконечную область, уже не единицу к конечному числу, но конечное число к бесконечному числу. Первое положение ориентирует нас в пределах конечной вещи: мы, наблюдая данную вещь, производим разложение ее на мельчайшие части и возводим голый, внекачественный факт ее существования к реальным ее свойствам и качествам. Второй положение заставляет изучать и анализировать данную конечную вещь не с точки зрения ее составленности из бесконечного количества едва заметных ее протяжений, но с точки зрения перехода от этой конечной вещи к другим вещам, и притом ко всем другим вещам: тут уже сама эта конечная вещь начинает играть роль как бы мельчайшего атома, на котором все же почила смысловая энергия всех вещей, всего бытия; и вот мы ориентированы уже во всей бесконечности, заключивши о ее смысле и форме, о ее качествах и свойствах из наблюдения над конечной вещью. Наконец, третье положение из вышеуказанных ориентирует нас в разных типах бесконечности, а именно во всех типах бесконечности; так как их, этих типов, тоже бесконечное количество, то существует свой особый путь от «бесконечности просто» к бесконечности всех бесконечностей; и этот путь содержит в себе ту же кривизну и является той же замкнутой (и в этом смысле конечной) линией, как и всякая бесконечность.
d) В анализе понятия Неперова числа е мы даем интерпретацию бесконечности, которую необходимо привести и здесь. Именно, упомянутый выше путь бесконечности дает определенную форму этой бесконечности решительно в каждом моменте этого пути. Отсюда можно ставить вопрос не только вообще о «каком–то» конечном числе, которое получается в результате «раскрытия неопределенной формы», но и о самом определенном. Тогда наше выражение 1°° = Л превратится в аналогию Неперова числа (1+-) и(где η стремится к бесконечности). Другими словами, бесконечность тут мыслится как некий предел, а единица — не как мертвая неподвижность, но как единица становящаяся, разбухающая, растущая. Так мыслить единицу необходимо для того, чтобы иметь возможность в каждое мгновение изучаемого процесса получить определенное значение этой «неопределенной формы». Тогда в особенности становится ощутительным алогический рост единицы до определенного конечного числа, который потом расширяется до перехода от конечного числа в бездны самой бесконечности. Рост от единицы до определенного конечного числа в вышеприведенном равенстве есть рост вещи от «бытия» до реальных «свойств», характеризующих вещь в ее конкретном развитии. Единица есть субстанция, первое числовое полага–ние и утверждение, бытие вещи. Как диалектика мыслит переход от «бытия» к прочим категориям? Диалектика мыслит все путем ограничения и оформления, т. е. превращения в размер [ен ]ность и делимость, т. е. путем превращения в дробность и раздельность. «Бытие» также должно получить определенность и форму, т. е. раздельность и дробность; и так как, кроме бытия, вообще ничего нет, то эта раздельность может возникнуть только из взаимоотношения бытия с самим же собою или со своими частями. Отсюда и получается Неперово число