Тени разума. В поисках науки о сознании
Тени разума. В поисках науки о сознании читать книгу онлайн
Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.
Для широкого круга читателей, интересующихся наукой.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
6.5. Матрицы плотности для ЭПР-пар
Перейдем к ситуациям, описание которых в терминах матриц плотности представляется особенно уместным — и в то же время выявляет один почти парадоксальный аспект интерпретации такой матрицы. Речь идет об ЭПР-эффектах и квантовой сцепленности. Рассмотрим физическую ситуацию, описанную в §5.17: частица со спином 0 (в состоянии | Ω〉) расщепляется на две частицы (каждая со спином 1/2), которые разлетаются вправо и влево, удаляясь на значительное расстояние друг от друга, в результате чего выражение для их совокупного (сцепленного) состояния принимает вид:
| Ω〉 = | L↑〉| R↓〉 - | L↓〉| R↑〉.
Предположим, что некий наблюдатель [45]имеет намерение измерить спин правой частицы с помощью некоего измерительного устройства, левая же частица успела уже удалиться на такое огромное расстояние, что добраться до нее наблюдатель не может. Как наш наблюдатель опишет состояние спина правой частицы?
Скорее всего, он весьма благоразумно воспользуется матрицей плотности
D = 1/2 | R↑〉〈 R↑ |+ 1/2 | R↓〉〈 R↓ |,
поскольку ничто не мешает ему вообразить, что некий другой наблюдатель — скажем, коллега, по случаю оказавшийся неподалеку от левой частицы, — решил измерить спин этой левой частицы в направлении «вверх/вниз». Узнать, какой именно результат получил упомянутый воображаемый коллега, нашему наблюдателю неоткуда. Однако он знает, что если коллега получил результат | L↑〉, то его собственная (правая) частица должна находиться в состоянии | R↓〉, если же коллега получил при измерении состояние | L↓〉, то правая частица должна находиться в состоянии | R↑〉. Нашему наблюдателю также известно (из стандартных правил квантовой теории, касающихся вероятностей, какие можно ожидать в данной ситуации), что воображаемый коллега может получить с равной вероятностью как результат | L↑〉, так и результат | L↓〉. Из всего этого наблюдатель заключает, что состояние его собственной частицы описывается комбинацией равных вероятностей (1/2 и 1/2 соответственно) двух альтернатив, | R↑〉 и | R↓〉, так что матрица плотности D с его стороны действительно должна быть такой, какую мы только что записали.
Он, впрочем, может предположить, что его коллега производил измерение левой частицы в направлении «влево/вправо». В этом случае совершенно аналогичное вышеизложенному рассуждение (на сей раз опирающееся на альтернативное описание | Ω〉 = | L←〉| R→〉 - | L→〉| R←〉, см. §5.17) приведет нашего наблюдателя к заключению, что спиновое состояние его собственной (правой) частицы описывается комбинацией равных вероятностей направлений оси спина «влево» и «вправо», а соответствующая матрица плотности имеет вид
D = 1/2 |→〉〈→ |+ 1/2 |←〉〈← |.
Как мы уже видели, эти матрицы плотности в точности одинаковы, однако их интерпретации— как комбинаций вероятностей альтернативных состояний — существенно различаются. Совершенно не важно, какую именно интерпретацию выберет наблюдатель. Из своей матрицы плотности он получит всю возможную информацию, требуемую для вычисления вероятностей результатов измерений спина правой (и только правой) частицы. Более того, поскольку коллега является воображаемым, нашего наблюдателя вообще не должно волновать, выполнялось ли хоть какое-то измерение спина левой частицы. Все та же матрица плотности D скажет ему все, что можно узнать о состоянии спина правой частицы до того, как он действительно выполнит измерение. В самом деле, уж наверное матрица плотности D определит «действительное состояние» правой частицы с гораздо большей точностью, нежели какой бы то ни было отдельный вектор состояния.
Руководствуясь подобными общими соображениями, люди порой приходят к выводу, что в определенных ситуациях матрицы плотности дают более адекватное описание квантовой «реальности», чем векторы состояния. Однако в ситуациях, подобных рассматриваемой, это не так. Ничто в принципе не мешает воображаемому коллеге превратиться в коллегу реального, а двум наблюдателям — передать друг другу результаты своих наблюдений. Корреляции между измерениями, выполненными одним наблюдателем, и измерениями, выполненными другим, невозможно объяснить отдельными матрицами плотности, описывающими каждая свою частицу. Для такого объяснения необходимо все сцепленное состояние целиком, в том виде, в каком оно представлено выше выражением для действительного вектора состояния | Ω〉.
Например, если оба наблюдателя решат измерять спины своих частиц в направлении «вверх/вниз», то они неизбежно должны получить диаметрально противоположные результаты. Индивидуальные матрицы плотности такой информации не содержат. Еще более серьезное возражение: как недвусмысленно показывает теорема Белла ( §5.4), моделировать сцепленное состояние связанной пары частиц какими бы то ни было локальными классическими методами (вроде «носков Бертлмана») до измерения невозможно. (Простая демонстрация этого факта приводится в НРК, примечание 14 после шестой главы, с. 301 — идея этой демонстрации, вообще говоря, принадлежит Стаппу [ 359], см. также [ 360]. Описан случай, когда один из наблюдателей измеряет спин своей частицы в вертикальном, «вверх/вниз», или горизонтальном, «вправо/влево», направлении, тогда как другой выбирает для измерения одно из направлений под углом в 45° к тем двум. Если заменить частицы со спином 1/2 частицами со спином 3/2, то такую демонстрацию можно сделать еще более убедительной, воспользовавшись магическими додекаэдрами из §5.3, так как при этом нам не понадобятся вероятности.)
Таким образом, в данной ситуации «матричное» описание может быть признано адекватным «реальности», только если имеется какая-либо причина, в принципене позволяющая выполнить (и сравнить) измерения на обоих концах системы. В обычных условиях таких причин, как правило, не существует. В условиях необычных — например, в ситуации, предложенной Стивеном Хокингом [ 191], где одна из частиц ЭПР-пары оказывается заключенной внутрь черной дыры, — могут появиться и более серьезные доводы в пользу матричного описания на фундаментальном уровне (что, собственно, и доказывает Хокинг). Однако такие доводы сами по себе предполагают некий серьезный пересмотр самих основ квантовой теории. Пока такого пересмотра не произошло, существенная роль матрицы плотности остается скорее практической (FAPP), нежели фундаментальной — что, впрочем, отнюдь не уменьшает ее важности.
6.6. FAPP-объяснение процедуры R
Теперь давайте посмотрим, какую же, в самом деле, роль играют матрицы плотности в рамках стандартного (FAPP-) подхода к объяснению «наблюдаемой» природы процедуры R. Идея заключается в том, что квантовая система и измерительное устройство (вместе с занимаемым ими окружением) — все три, предполагается, эволюционируют вместе в соответствии с процедурой U— ведут себя так, будтовсякий раз, когда эффекты измерения оказываются нерасторжимо сцеплены с этим самым окружением, происходит процедура R.
Изначально квантовая система считается изолированной от окружения, однако в момент «измерения» в измерительном устройстве инициируются макроскопические эффекты, которые вскоре приводят к возникновению сцепленностей с элементами окружения, причем количество этих сцепленностей непрерывно возрастает. На этом этапе картина во многом напоминает описанную в предыдущем параграфе ЭПР-ситуацию. Квантовая система (вместе с только что сработавшим измерительным устройством) выступает в роли правой частицы, тогда как возмущенное окружение аналогично отдаленной левой частице. Физик, намеревающийся осмотреть измерительное устройство, играет роль, схожую с ролью наблюдателя, предполагающего исследовать правую частицу. Наблюдатель не имеет доступа к каким бы то ни было измерениям, которые могли быть выполнены на левой частице; аналогично, нашему физику недоступна подробная картина возмущений, предположительно произведенных в окружении измерительным устройством. Окружение состоит из огромного количества случайным образом движущихся частиц, и можно смело утверждать, что детальная и точная информация относительно того, какому именно возмущению подверглись частицы окружения, будет безвозвратно потеряна для физика. Аналогичным образом, наблюдателю у правой частицы из предыдущего примера недоступны какие бы то ни было сведения о спине левой частицы. Как и в случае с правой частицей, состояние измерительного устройства адекватно описывается не отдельным вектором состояния, но матрицей плотности; соответственно, измерительное устройство рассматривается не как чистое, отдельно взятое квантовое состояние, но как комбинация вероятностей состояний. Согласно стандартной интерпретации, эта комбинация вероятностей дает те же вероятностно-взвешенные альтернативы, что мы получили бы в результате процедуры R— по крайней мере, с практической точки зрения.