Тени разума. В поисках науки о сознании
Тени разума. В поисках науки о сознании читать книгу онлайн
Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.
Для широкого круга читателей, интересующихся наукой.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Квантовая сцепленность не обращает никакого внимания не только на разделенность в пространстве, но и на разделенность во времени. Если измерение одного из компонентов ЭПР-пары выполнено преждетакого же измерения другого компонента, то в обычном квантовомеханическом описании считается, как правило, что расцепленность пары явилась результатом именно первого измерения, второе же измерение «захватывает» уже только один, расцепленный, компонент — собственно тот, над которым оно производится. Однако в точности такие же наблюдаемые результаты мы получим, если допустим, что второеизмерение каким-то образом ретроактивно вызвало расцепление, оставив первое в стороне. Окончательный результат не зависит от порядка выполнения измерений — иначе говоря, измерения коммутируют(см. §5.14).
Такая симметрия является необходимым свойством ЭПР-измерений — в противном случае, они противоречили бы наблюдаемым результатам специальной теории относительности. Измерения, производимые над пространственноподобно разделенными событиями (например, событиями, находящимися вне световых конусов друг друга; см. рис. 5.25и объяснение, приведенное в §4.4), неминуемодолжны коммутировать — при этом и в самом деле абсолютно неважно, какое именно измерение мы будем полагать «первым», — согласно незыблемым принципам специальной теории относительности. Для того, чтобы в этом убедиться, предположим, что вся эта физическая ситуация описывается с точек зрения двух разных наблюдателей, движущихся каждый в своей системе отсчета (см. рис. 5.26, а также НРК, с. 287). (Эти «наблюдатели» вовсе не обязаны иметь какое бы то ни было отношение к тем, кто выполняет измерения.) В представленной ситуации наблюдатели получат совершенно противоположные представления о том, какое измерение было в действительности выполнено «первым». В отношении измерений ЭПР-типа, феномен квантовой сцепленности — или, если угодно, расцепленности [41]— не знает ни разделенности в пространстве, ни последовательности во времени!
Рис. 5.25. Два события в пространстве-времени называются пространственноподобно разделенными, если каждое из них находится вне светового конуса другого (см. также рис. 4.1). В этом случае события не могут оказывать друг на друга никакого причинно-следственного воздействия, следовательно, измерения, производимые над этими событиями, должны коммутировать.
Рис. 5.26. Согласно специальной теории относительности, наблюдатели A и B, движущиеся относительно друг друга, получают различные представления о том, какое из двух пространственноподобно разделенных событий P и Q произошло первым (наблюдатель A полагает, что первым было событие Q, а наблюдатель B уверен, что событие P).
5.18. Объяснение загадки магических додекаэдров
Для ЭПР-пары частиц со спином 1/2 эта пространственная или временная нелокальность проявляется исключительно в виде вероятностей. Однако на деле феномен квантовой сцепленности вероятностями не ограничивается — он гораздо более конкретен и точен. Магические додекаэдры (и кое-какие более ранние конфигурации {71} ) убедительно показывают, что странная нелокальность квантовой сцепленности не только порождает вероятности, но и является причиной вполне определенных «да/нет»-эффектов, которые никакими классическими построениями объяснить невозможно.
Попытаемся разобраться в квантовой механике феномена магических додекаэдров из §5.3. Вспомним, что «Квинтэссенциальные Товары», там, у себя, на Бетельгейзе, взяли систему с общим спином 0 (начальное состояние | Ω〉), разделили ее на два атома (каждый со спином 3/2) и подвесили аккуратно каждый атом в центр додекаэдра. Додекаэдры затем тщательно упаковали и отправили почтой (один — мне, а другой — моему коллеге в систему альфы Центавра), обеспечив при этом полную неизменность спиновых состояний этих самых атомов до тех пор, пока кто-то из нас не выполнит, наконец, измерение спина, нажав на одну из кнопок, размещенных в вершинах додекаэдров. Дело в том, что нажатие на кнопку активирует (скажем, с помощью неоднородного магнитного поля, упомянутого в §5.10) измерение (типа измерения Штерна—Герлаха) атома, расположенного в центре соответствующего додекаэдра, — а возможных результатов измерения частицы со спином 3/2, как нам известно, всего четыре, и они соответствуют (в случае, если измерительное устройство сориентировано вертикально) четырем взаимно ортогональным состояниям: |↑↑↑〉, |↓↑↑〉, |↓↓↑〉 и |↓↓↓〉. Различаются эти состояния по местоположению атома после прохождения через устройство в одном из четырех возможных лучей. Однако «Квинтэссенциальные Товары» устроили все таким образом, что при нажатии на любую кнопку измерительное устройство непременно оказывается сориентировано в направлении (от центра додекаэдра) на эту самую кнопку. Звонок звенит (результат ДА), если атом при измерении обнаруживается во второмиз четырех возможных местоположений (см. рис. 5.27). Иначе говоря, ответ ДА(для случая, когда устройство ориентировано вертикально) вызывается состоянием |↓↑↑〉 — звенит звонок, за которым следует впечатляющий фейерверк, — остальные три состояния никакойреакции невызывают (ответ НЕТ). В случае ответа НЕТтри оставшиеся луча сводятся вместе (скажем, посредством изменения направленности неоднородного магнитного поля на обратную), что не сопровождается никакими разрушительными эффектами, — и мы снова можем нажимать на какую-нибудь другую кнопку, выбирая тем самым новое направление изменения поля. Отметим тот факт, что каждое нажатие кнопки является, по сути своей, примитивнымизмерением, согласно определению этого термина, данному в §5.13.
Рис. 5.27. «Квинтэссенциальные Товары» устроили все таким образом, что при нажатии на кнопку в одной из вершин додекаэдра выполняется измерение спина атома со спином 3/2 в направлении на кнопку (каковое направление принимается за направление «вверх»). Если при этом измерении обнаруживается состояние |↓↑↑〉. то звенит звонок (результат ДА). Если получен результат НЕТ, лучи сводятся вместе, и измерение повторяется в каком-либо другом направлении.
Общее состояние Q) нашей системы из двух атомов со спином 3/2 можно записать следующим образом:
| Ω〉 = | L↑↑↑〉| R↓↓↓〉 - | L↑↑↓〉| R↓↓↑〉 + | L↑↓↓〉| R↓↑↑〉 - | L↓↓↓〉| R↑↑↑〉.
Будем считать мой атом правым; в этом случае, если я обнаруживаю, что он действительно находится в состоянии | R↓↑↑〉, поскольку звонок звенит при моем первом нажатии на верхнюю кнопку, то звонок додекаэдра моего коллеги должен зазвенеть, если тому случится нажать первой кнопку, противоположную моей, — т.е. состояние его атома | L↑↓↓〉. Более того, если при нажатии первой кнопки мой звонок не зазвенит, то не зазвенит и его звонок при нажатии противоположной кнопки.
Теперь необходимо убедиться, что при таких примитивных «кнопочных» измерениях действительно выполняются гарантируемые «Квинтэссенциальными Товарами» свойства (а) и (б). В Приложении Cприведены некоторые математические подробности предложенного Майораной описания спиновых состоянии (в частности, для спина 3/2), вполне достаточные для какого угодно доказательства. Для упрощения рассуждений представим себе, что сфера Римана проходит через все вершины рассматриваемого додекаэдра, т.е. описываетдодекаэдр. Отметим далее, что в описании Майораны ДА-состояние для нажатия кнопки в некоторой вершине P додекаэдра включает в себя дважды саму точку P, а также точку P*, антиподальную P, — что и в самом деле соответствует состоянию | R↓↑↑〉, если точка P находится на северном полюсе додекаэдра. Иначе говоря, это ДА-состояние мы можем обозначить через |P*PP〉.