Летающие жирафы, мамонты-блондины, карликовые коровы... От палеонтологических реконструкций к предск
Летающие жирафы, мамонты-блондины, карликовые коровы... От палеонтологических реконструкций к предск читать книгу онлайн
Жизнь на Земле не смогли истребить ни падения огромных астероидов, ни гигантские извержения вулканов, а «потопы» и смена магнитных полюсов оказались с точки зрения ее существования незначительными событиями. Можно сказать, что живые существа только сплотились перед лицом общих невзгод. Последние 3,5 миллиарда лет именно они усердно работают над Землей, бросая ее то в жар, то в холод — меняя климат планеты с парникового на ледниковый и обратно, и при этом изменяются сами: с каждой сменой климата возникают все новые существа. Так, порождением последней ледниковой эпохи стали мамонты, кактусы и, возможно, человек, который далеко не первый и не последний в нескончаемой череде превращающихся друг в друга организмов. Книга Андрея Журавлева рассказывает, как палеонтология помогает понять настоящее и будущее нашей планеты. Андрей Журавлев — профессор кафедры биологической эволюции биологического факультета МГУ им. М. В. Ломоносова, научный редактор журнала «National Geographic Россия».
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
В двух тысячах километрах на юго-восток от этого места — в Центральной Якутии — из-за сурово-континентальных условий зима длится семь месяцев, и уже в ноябре температура падает до -40 °C, а то и невообразимо ниже. Мы сидим в скособоченном УАЗике, который скачет по наклонному бечевнику реки Лены в сторону какого-то атомного по цвету заката. На противоположном, правом, берегу скоро покажутся Ленские столбы, куда еще предстоит дойти, три часа петляя среди наледей и торосов. А сейчас над нами нависают желтоватые утесы и преграждают дорогу когда-то сорвавшиеся с них глыбы. Одна из них привлекает внимание ровным узором на поверхности. Покидаю жаркое нутро неистребимого советского внедорожника и подбираюсь к глыбе поближе. Это, конечно, не писаница трехтысячелетней давности, одна из которых красной охрой нанесена на скале недалеко отсюда: семья из трех полосатых лосей, олицетворяющих круговорот природы (семиполосный лось — семимесячная якутская зима, пятиполосная лосиха — лето и пронзенный копьем лосенок — постоянно нарождающийся и умирающий мир). Узор создан природой: слои из небольших тонких известковых плиток, сложенных домиком и вновь затвердевших, — это следы мощных торнадо, бушевавших около полумиллиарда лет назад, когда здесь раскинулось обширное тропическое море. Сейчас подобные осадочные породы — темпеститы [24] — образуются, например, у Багамских островов, где шторма, вызванные торнадо, взламывают известковое дно и выкладывают свою мозаику.
Температурные контрасты между нынешними Чукоткой и Якутией и их геологическим прошлым определяются разными причинами. Полмиллиарда лет назад Якутия действительно находилась почти у экватора, а 70 миллионов лет назад было теплее на всей планете. Но как отличить одну причину от другой и какие силы предопределяют климатические колебания?
Как вообще измерить температуру на Земле в былые эпохи? С помощью змеи. Берем змею и меряем. И это не шутка: чем теплее, тем длиннее может вытянуться такое пресмыкающееся. Поэтому, зная, что палеоценовая змея из Колумбии была 13 метров длиной (нынешний рекордсмен — сетчатый питон — уступает ей три метра) и весила более тонны, можем рассчитать, как это сделал палеоклиматолог Джейсон Хед из Торонтского университета и его коллеги, что 60 миллионов лет назад среднегодовые температуры умеренных широт достигали 32–33 °C. Заметно теплее, чем сейчас. Оказалось, что в змеях или крокодилах температуру можно измерить гораздо точнее, чем с помощью главного индикатора палеоклимата — формы листьев, занижающих этот показатель на 6–8°.
Крокодилы очень теплолюбивы: разные виды развивают активность при температурах от 30 до 40 °C, а если столбик термометра опускается ниже 5 °C (для некоторых видов — всего 25 °C), обычно гибнут. Бывают, правда, случаи, как в американской Пенсильвании, когда сбежавший крокодил протянул на воле семь лет при зимних температурах до -6 °C, но размножаться он все равно не мог, даже если бы ударился в бега с партнером противоположного пола. Поэтому ископаемые крокодильи кости, обнаруженные в приполярных широтах, доказывают: прежде климат здесь бывал и жарче, например в эоценовую эпоху (50 миллионов лет назад), когда эти пресмыкающиеся поселились на острове Элсмир в Арктической Канаде. А морские крокодилы процветали лишь в самые жаркие времена. В отличие от ихтиозавров и плезиозавров, как считает биогеохимик Кристоф Лекюе из Лионского университета, крокодилы никогда не обладали способностью регулировать температуру тела, о чем свидетельствует изотопный состав их костей — такой же, как у холоднокровных рыб. В течение 200 миллионов лет своего существования бороздившие моря и океаны крокодилы неоднократно вымирали, а затем «нарождались» — происходили заново от пресноводных видов. Ныне подобных рептилий всего две: гребнистый крокодил и острорылый, но в открытом море они не встречаются (один населяет побережье Юго-Восточной Азии и Северной Австралии, другой — Центральной Америки).
Итак, змеи и крокодилы показывают, что в палеоценовую и эоценовую эпохи на Земле действительно было жарче, причем не только в умеренных и полярных широтах, как принято считать, исходя из модели термостата. Эта модель предполагает, что если где-то прибавилось (в Заполярье), то где-то должно убавиться (в тропиках), и получается, что перепад температур от полюса к экватору был не таким резким, как в наши дни. Однако в теплые времена, подобные юрскому — палеогеновому периодам, и разница температур была заметной, и их среднегодовые значения повсеместно выше — на 10 °C.
Если говорить серьезно, то, конечно, палеоклиматологи для подобных реконструкций одной змеей не довольствуются. Палеотемпературы измеряются с помощью океанического растительного планктона; обитавших на дне морей одноклеточных — фораминифер и многоклеточных — брахиопод и двустворок; плававших в толще вод головоногих моллюсков, зубастых акул и ящеров. Главное, чтобы у этих организмов была раковина или зубы, в которых за время жизни их хозяев накапливаются сведения обо всех изменениях среды, в том числе температуры. Самый простой и достаточно надежный способ измерить температуру у организма, которому и градусник вставить некуда, и в живых давно (несколько десятков — сотен миллионов лет) нет, придумал Гарольд Юри, нобелевский лауреат, который советовал геологам собирать тектиты, а астронавтам — лунный грунт. Это соотношение стабильных изотопов кислорода: 18О к 16О. Оба изотопа входят в состав молекул воды. Но облегченные молекулы испаряются быстрее, и потому большая их часть в виде пара находится в атмосфере и выпадающих оттуда осадках (в этом случае в метеорологическом смысле, а не в геологическом), а также в ручьях и реках, льдами и снегами питаемых. В холодные времена, когда значительные массы атмосферных осадков ледяными шапками застывают в полярных областях и ледниками расползаются оттуда до умеренных широт, океан обогащается тяжелым изотопом. А значит, в избытке получат его и все живущие в равновесии со средой организмы. Есть, правда, и такие, которые сами влияют на кислородный баланс в своем скелете, но методом проб (из этого самого скелета) и ошибок (в расчетах) палеоклиматологи смогли выбрать лучших из лучших. Ими и оказались выше перечисленные организмы. Правда, работая с палеозойскими слоями, приходится резко ограничивать круг избранных, поскольку скелеты, построенные из нестойких карбонатных минералов, закономерно преобразуясь в стойкие, увы, теряют первичный изотопный сигнал. Так что самые точные палеозойские термометры — это раковины брахиопод (низкомагнезиальный кальцит и фосфат) и зубы позвоночных (фосфат).
Исходя из примерного соответствия температур уровню углекислого газа в атмосфере, можно измерить этот показатель и другими методами. Например, по плотности устьиц на листовой пластинке, которая тем меньше, чем выше парциальное давление двуокиси углерода. Эти органы растений осуществляют пассивный газообмен со средой: при обильном углекислом газе много устьиц не требуется, а вот при низком уровне, когда на счету каждая молекула, их нужно как можно больше. Значит, сгущение устьиц указывает на падение температуры, и наоборот. Можно прикинуть палеотемпературы по соотношению стабильных изотопов углерода в почвенных минералах или по соотношению стабильных изотопов бора в раковинках планктонных фораминифер, отражающему кислотность среды. Все эти показатели тоже напрямую зависят от парциального давления углекислого газа.