-->

Наука о живом. Современные концепции в биологии

На нашем литературном портале можно бесплатно читать книгу Наука о живом. Современные концепции в биологии, Медавар Питер-- . Жанр: Биология / Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Наука о живом. Современные концепции в биологии
Название: Наука о живом. Современные концепции в биологии
Дата добавления: 16 январь 2020
Количество просмотров: 250
Читать онлайн

Наука о живом. Современные концепции в биологии читать книгу онлайн

Наука о живом. Современные концепции в биологии - читать бесплатно онлайн , автор Медавар Питер

Научно-популярная книга, одним из авторов которой является лауреат Нобелевской премии, английский ученый Питер Медавар, посвящена наиболее фундаментальным и представляющим всеобщий интерес проблемам современной биологии.

Авторы сочетают высокий научный уровень с увлекательным и ясным стилем изложения. Книга рассчитана на интересующихся современными проблемами биологии, а также на специалистов — биологов, психологов, социологов и философов.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 8 9 10 11 12 13 14 15 16 ... 47 ВПЕРЕД
Перейти на страницу:

Естественный отбор. Чарлз Дарвин прекрасно сознавал анимистические ассоциации, связанные с термином «естественный отбор», но он, разумеется, не считал, будто природа на самом деле отбирает что-либо, словно человек, решающий, как ему поступить в том или ином случае. В своей переписке, особенно с Асой Греем, он совершенно ясно показал, что использует термин «естественный отбор» только для того, чтобы избежать утомительных повторений, которые были бы неизбежны, если бы каждый раз употреблять его полную и верную форму. Правильное изложение принципа естественного отбора выглядит примерно так (оно несколько длинновато, но зато достаточно точно):

Все люди, которые будут жить через сто лет, окажутся потомками людей, живущих сегодня, так что люди, живущие сегодня, включают сто процентов предков будущих поколений. Однако люди принадлежат к очень многочисленным и разнообразным генетическим типам, и нет никаких оснований полагать, что каждый генетический тип составит равную или {54} численно пропорциональную долю среди этих предков. Некоторые генетические типы получат непропорционально большое представительство; соответственно этому они будут, так сказать, отобраны и дадут своим обладателям дополнительный шанс оставить потомство. Это суждение, конечно, полностью ретроспективно, и приравнивание естественного отбора выживанию наиболее приспособленных представляет собой чистейшую тавтологию. Суть же этой теории заключается в том, что организмы с более высоким нетто-коэффициентом воспроизведения лучше приспособлены к своей среде, чем их менее удачливые современники. Слово «нетто» (чистый) в выражении «нетто-коэффициент воспроизведения» имеет особое значение. Даже биологи старшего поколения, которым это было бы вроде и не к лицу, жаловались, что современный дарвинизм рассматривает воздействие отбора исключительно в свете численности производимого потомства, в то время как реальные положительные или отрицательные результаты отбора выражаются в цифре, характеризующей чистую вероятность выживания и воспроизведения, т. е. шансы какого-то организма произвести на свет отпрыска, который доживет до возраста, достигнутого его родителями к моменту его появления на свет (см. гл. 8).

В процессе естественного отбора отбирается (или не отбирается) отдельный организм, но в классической формулировке популяционной генетики в качестве объекта отбора рассматриваются отдельные гены. В популяциях, в которых происходит свободное скрещивание, процессы, открытые Менделем, не влияют на частоту проявления отдельных генов. Можно считать, что эта частота остается постоянной от поколения к поколению до тех пор, пока (если сознательно употребить метафорическое выражение) какие-то внешние «силы» не вызовут изменения этой частоты. Одной из таких внешних сил является мутационное давление, которое увеличивает частоту проявления генов-мутантов, поскольку мутация генов представляет собой повторяющийся процесс, так что гены-мутанты вводятся в популяцию вновь и вновь. Вторым фактором, способным радикально изменить соотношение генов в популяции, является (первым это установил Сьюэл Райт) случай. Особенно в отношении {55} малых популяций невозможно с уверенностью утверждать, что совокупность генов, представленных в гаметах, будет точно совпадать с совокупностью генов, представленных в родительском поколении этой популяции: частота проявления одних генов может случайно увеличиться, в то время как частота проявления других может уменьшиться или даже упасть до нуля, — такие изменения называются генетическим дрейфом. Но какая бы роль ни приписывалась этим факторам, все ученые-эволюционисты согласны с тем, что активнее всего влияет на изменение частоты проявления генов естественный отбор в описанном выше смысле, т. е. более высокий нетто-коэффициент воспроизведения у носителей одних генов по сравнению с тем же коэффициентом у носителей их альтернативных, или аллельных, форм.

Определение естественного отбора через понятие более высокого нетто-коэффициента воспроизведения есть только общая количественная оценка набора генов; она ничего «е говорит о его природе или свойствах.

Представление эволюционных изменений через частоту проявления тех или иных генов — это вовсе не такая уж абстракция, как может показаться на первый взгляд; дело в том, что простая алгебраическая теорема (теорема Харди — Вейнберга) позволяет преобразовать констатацию частоты проявления генов какой-либо популяции в констатацию частоты, с которой они проявляются в гомозиготной и гетерозиготной формах. Таким образом, мы по желанию можем перейти от частоты проявления генов к определению частоты проявления целых генетических наборов.

Теорема Харди — Вейнберга. Годфри Харолд Харди (1877–1947) был одним из самых выдающихся английских математиков своего времени и во многих отношениях фигурой поистине олимпийской. Заинтересовавшись генетикой, он вскоре заметил, что менделевские законы наследственности дают возможность сформулировать что-то вроде алгебраического выражения, наиболее важной частью которого стала уже упоминавшаяся теорема Харди — Вейнберга. На первый взгляд оно кажется скучным количественным описанием распределения наследуемых генов, на {56} самом же деле имеет огромное значение для популяционной генетики, евгеники и вообще практически для любого проявления генетики.

Теорема эта примет самый простой вид, если мы будем рассматривать альтернативные гены, назвав их А и а. Для этих альтернативных генов возможны три генетических набора — два гомозиготных АА и аа и один гетерозиготный Аа. Предположим, что частота проявления А составляет р (например, 0,6), частота же (q) проявления его альтернативного гена а по необходимости составит (1–р)=0,4. Теорема Харди — Вейнберга утверждает, что в свободно скрещивающейся популяции при равной численности обоих полов с указанной частотой проявления альтернативных генов частоты проявления трех возможных комбинаций АА, аа и Аа составят следующую пропорцию:

р2: 2pq: q2.

Важнейшее значение этого уравнения заключается в том, что оно дает возможность превратить обобщенную и словно бы абстрактную констатацию относительной частоты проявления в популяции тех или иных генов в констатацию относительной частоты проявления реальных генотипов. Важность этой теоремы для популяционной генетики и евгеники объясняется в гл. 7.

Есть что-то ньютоновское в том, как естественный отбор входит в генетическую теорию эволюции частота проявления генов в данной популяции остаётся постоянной от поколения к поколению, пока не подвергается изменению под действием какой-нибудь движущей силы, причем абсолютно превалирующей среди этих сил является естественный отбор. Хотя слово «сила» и употреблено здесь фигурально, о естественном отборе можно сказать, что он имеет и величину, и направление. Величина его определяется более высоким нетто-коэффициентом воспроизведения, а направление — характером замещения одного специфического аллеля другим.

Ни один философски образованный ученый не рискнет утверждать, будто теория эволюции в изложенной выше форме установлена настолько твердо, что не вызовет в будущем никаких вопросов и не {57} потребует никаких изменений; но вместе с тем надо ясно представлять себе, в чем заключаются ее реальные или воображаемые слабости. Способность естественного отбора вызывать самые широкие и кардинальные изменения в генетических наборах популяций совершенно несомненна — единственный сомнительный момент в этой теории сводится к вопросу, что именно воздействует на объект отбора. Признавая широту и огромное богатство деталей тех наследственных изменений, которые происходят благодаря менделевским законам изменчивости в соединении с мутациями, поставляющими дополнительный материал для комбинации генов, мы в то же время вправе задать себе вопрос, все ли здесь известно и не может ли быть иных, до сих пор не обнаруженных источников изменений; некоторые кощунствующие молодые иммунологи даже расшифровывают буквы GOD («бог» по-английски) как Generator of Diversity (генератор разнообразия). Именно такие неясности и заставляли многих людей, особенно тех, чья подготовка не дает им права высказывать какие-либо мнения по данному вопросу (в том числе Бернарда Шоу), усомниться в верности генетической теории эволюции и предпочесть мистический ее вариант, т. е. ламаркизм, к краткому изложению которого мы сейчас и перейдем.

1 ... 8 9 10 11 12 13 14 15 16 ... 47 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название