Очерки о Вселенной
Очерки о Вселенной читать книгу онлайн
Настоящая книга знакомит читателей с современным состоянием астрономических знаний, хотя и не претендует на то, чтобы равномерно охватить все разделы науки о Вселенной. Эта научно-популярная книга даёт отдых читателю и разряжает временами напряжение ума не только наглядным сравнением, но и шуткой. Содержит много иллюстраций. Издание шестое переработанное и дополненное
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Глава 6. Ближайшая к нам звезда - Солнце
Первое знакомство
Солнце! Животворящее, ясное, красное, лучезарное! Сколько эпитетов дается тебе! Ты и источник жизни на Земле, ты и глава планетной семьи, ты и ближайшая к нам звезда, ибо каждая звезда - солнце. Можно подойти к Солнцу с разных точек зрения. Есть что сказать о нем и метеорологу, и радисту, и врачу, и ботанику, и химику, и поэту, не говоря уже об астрономах. Много явлений обнаружено на Солнце, и описания многих из них напоминают те, которые делаются в метеорологических обсерваториях при регистрации перемены погоды, сложных движений атмосферных масс. Лишь будущему, но надеемся, близкому, предстоит теоретически охватить эти факты и уложить их в стройную картину физической природы Солнца.
Мы наблюдаем бурные изменения на Солнце, но причина их нам часто далеко еще не ясна, хотя общее строение Солнца нам уже довольно хорошо известно и за последние годы теория солнечных явлений сильно продвинулась вперед. Солнце ближе к нам, чем другие звезды, и его можно изучить особенно подробно. Результаты его изучения помогают уяснить природу других далеких солнц, видимых лишь как светлые точки даже в самые сильные телескопы. Познакомимся же с Солнцем, как с представителем мира бесчисленных звезд.
Раскаленный газовый шар, излучающий потоки тепла и света, единственный их источник в Солнечной системе, - вот что такое ближайшая к нам звезда.
Рис. 114. Один из крупнейших в мире инструментов для исследования Солнца - башенный солнечный телескоп Крымской обсерватории
Нам известна энергия Солнца по той ее доле, которая падает на Землю с расстояния в полтораста миллионов километров. С учетом поглощения в атмосфере на квадратный сантиметр поверхности, перпендикулярной к солнечным лучам, за минуту падает энергия, которой достаточно, чтобы нагреть два грамма воды на 1 градус. Эта величина несколько меняется с изменением расстояния от Земли до Солнца и, вероятно, в связи с явлениями, протекающими на нашем центральном светиле. До того как были заподозрены колебания в излучении Солнца, эту величину назвали «солнечной постоянной». Геофизики определяют ее прямыми опытами почти ежедневно, например, наблюдая нагревание воды в особых сосудах, выставленных навстречу солнечным лучам.
Умножив солнечную постоянную на величину поверхности сферы с радиусом в полтораста миллионов километров, мы узнаем полное излучение Солнца. Оно составляет 5,43•1027 калорий в минуту. Если эту мощность теплового излучения перевести в механическую мощность, то она составит 5•1023 лошадиных сил. Эту величину трудно себе представить и, может быть, лучше сказать, что если бы мы могли мгновенно обложить Солнце слоем льда толщиной 12 м, то уже через минуту этот слой растаял бы. Если бы мы могли от Земли к Солнцу перебросить мост в виде ледяной колонны толщиной 3 км и могли сосредоточить на нем все излучение Солнца, то уже через секунду он бы растаял, а еще через 8 секунд обратился бы в пар.
Солнечный свет создает на Земле освещение, в 465 000 раз более яркое, чем освещение полной Луны, и чтобы его заменить, нужно 135 000 стандартных (международных) свечей, поставленных на расстоянии 1 м.
Зная расстояние до Солнца и его видимый угловой диаметр (1/2°), мы легко узнаем его линейные размеры. Диаметр Солнца больше земного в 109 раз, поверхность в (109)2, или в 12 000 раз, и объем в (109)3, что составляет 1 300000 раз. (В километрах диаметр Солнца составляет 1 390 600, но число это мало наглядно.)
Разделив полное излучение Солнца на величину его поверхности, мы узнаем, что один ее квадратный сантиметр светит как 50 000 международных свечей. Поверхность Солнца в 10 000 раз ярче расплавленной платины и в 10 раз ярче пламени электрической дуги. Доля света в общем потоке энергии, идущем от Солнца, характеризуется величиной 8 свечей на ватт, тогда как для обычных электрических ламп накаливания она составляет не более 2 свечей на ватт.
Такой высокий коэффициент светового полезного действия солнечного вещества обязан его высокой температуре.
Мощность излучения с единицы поверхности Солнца, получаемая от деления всей его мощности на величину его поверхности, составляет 84 000 лошадиных сил на квадратный метр, и эта мощность поддерживается, несомненно, в течение сотен миллионов или даже миллиардов лет. Как устойчивы и мощны должны быть источники энергии в недрах Солнца! Мы поговорим о них в другой главе, а тут лишь укажем, что только ничтожная часть энергии, щедро расточаемой Солнцем, используется планетами. На долю Земли приходится лишь 1/2200000000 ее часть. Тем не менее и она колоссальна. Если ее расценить на деньги по цене 2 коп. за киловатт-час, то окажется, что за секунду Земля получает энергии от Солнца на миллиард рублей.
Рис. 115. Сравнительные размеры Солнца и планет
Можно сказать, что эти деньги буквально бросаются на ветер, так как ветер есть перемещение воздуха, возникающее от неодинакового нагревания различных мест земной атмосферы и поверхности Земли. Впрочем, не все эти деньги идут на ветер..., большая их доля утекает от нас вместе с водой (с водой рек и с потоками дождя). Часть солнечной энергии используется растениями, а небольшая доля этой части используется нами как топливо в виде торфа, дров и каменного угля.
О прямом использовании солнечной энергии сверх того, что нам дает движущая сила ветра и воды, приводимых в движение Солнцем, говорится давно. Разрешение этой задачи встречает много трудностей, но надо прямо сказать, что инженеры-энергетики уделили этому вопросу еще слишком мало внимания. Например, в СССР до сих пор имеются только небольшие пробные установки вроде солнечной бани и солнечной кухни в Ташкенте. Надо также отметить использование солнечной энергии на искусственных спутниках Земли и Солнца путем применения кремниевых фотоэлементов, превращающих световую энергию Солнца в фотоэлектрическую.
И Солнце не без пятен
«И Солнце не без пятен», - с огорчением констатировали в XVII веке современники их открытия. Да, и Солнце не без пятен..., но не всегда. Как известно, число пятен и площадь, занятая ими, меняются периодически, хотя и не очень правильно, с периодом в 11 лет. Последний максимум пятен был в 1968 г., а в год минимума иногда целые месяцы на Солнце нет ни одного пятна. Каждый цикл они зарождаются по обе стороны от экватора Солнца на широтах около 30° и по мере увеличения их числа появляются все ближе и ближе к экватору. Последние пятна умирающего цикла появляются почти у самого экватора, но близ полюсов их не бывает никогда.
Если вы закроете ослепительную фотосферу диафрагмой в фокусе окуляра телескопа так, чтобы в нее было видно лишь «черное» солнечное пятно, то берегитесь смотреть на него без темного стекла - вы ослепнете. Понятие черноты относительно, и темные вследствие контраста на фоне фотосферы пятна сами по себе тоже ослепительно ярки.
Пятна появляются обычно группами, в которых происходят непрерывные изменения: появление новых пятен, изменение формы старых, а чаще всего их дробление на части и постепенное исчезновение.
Иногда они существуют лишь несколько дней, иногда - несколько месяцев.
Рис. 119. Изменение в группе солнечных пятен
Пятно состоит обычно из ядра, или «тени», окруженной более светлой «полутенью» как бы волокнистого строения со следами завихрения вокруг центра пятна. Центр пятна лежит обычно ниже окружающей фотосферы, но «не намного» - на сотни километров, тогда как по площади пятна обычно больше площади Европы и даже больше площади земного шара.
Меньшая яркость пятен вызвана меньшей температурой солнечных газов в этих местах. Судя по спектру, она составляет около 4500° и равна температуре звезд оранжевого цвета, тогда как спектр фотосферы такой же, как спектр более горячих желтых звезд. Более низкая температура допускает образование в пятнах большого числа молекул химических «соединений, тогда как в фотосфере эти соединения встречаются в небольшом количестве. Если там из каких-либо сцепившихся друг с другом атомов и сложится молекула, то она обычно сейчас же будет разбита на части при бешеных столкновениях с другими частицами, возникающих при высоких температурах.