Сущность технологии СОМ. Библиотека программиста
Сущность технологии СОМ. Библиотека программиста читать книгу онлайн
В этой книге СОМ исследуется с точки зрения разработчика C++. Написанная ведущим специалистом по модели компонентных объектов СОМ, она раскрывает сущность СОМ, помогая разработчикам правильно понять не только методы модели программирования СОМ, но и ее основу. Понимание мотивов создания СОМ и ее аспектов, касающихся распределенных систем, чрезвычайно важно для тех разработчиков, которые желают пойти дальше простейших приложений СОМ и стать по-настоящему эффективными СОМ-программистами. Показывая, почему СОМ для распределенных систем (Distributed СОМ) работает именно так, а не иначе, Дон Бокс дает вам возможность применять эту модель творчески и эффективно для ежедневных задач программирования.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
template <class Itf, const IID* piid> class GlobalInterfacePointer {
DWORD m_dwCookie;
// the GIT cookie
// «закладка» GIT
// prevent misuse
// предотвращаем неправильное использование
GlobalInterfacePointer(const GlobalInterfacePointer&);
void operator =(const GlobalInterfacePointer&);
public:
// start as invalid cookie
// начинаем как неправильная «закладка»
GlobalInterfacePointer(void) : m_dwCookie(0) { }
// start with auto-globalized local pointer
// начинаем с автоматически глобализованным локальным указателем
GlobalInterfacePointer(Itf *pItf, HRESULT& hr) : m_dwCookie(0)
{ hr = Globalize(pItf); }
// auto-unglobalize
// осуществляем автоматическую деглобапизацию
~GlobalInterfacePointer(void) { if(m_dwСооkiе) Unglobalize() ; }
// register an interface pointer in GIT
// регистрируем интерфейсный указатель в GIT
HRESULT Globalize(Itf *pItf) { assert (g_pGIT != 0 && m_dwCookie == 0);
return g_pGIT->RegisterInterfaceInGlobal(pItf, * piid, &m_dwCookie);
}
// revoke an interface pointer in GIT
// аннулируем интерфейсный указатель в GIT
HRESULT Unglobalize(void) {
assert(g_pGIT != 0 && m_dwCookie != 0);
HRESULT hr = g_pGIT->RevokeInterfaceFromGlobal(m_dwCookie);
m_dwCookie = 0;
return hr;
}
// get а local interface pointer from GIT
// получаем локальный интерфейсный указатель из GIT
HRESULT Localize(Itf **ppItf) const {
assert(g_pGIT != 0 && m_dwCookie != 0);
return g_pGIT->GetInteгfaceFromGlobal(m_dwCookie, *piid, (void**)ppItf);
}
// convenience methods
// методы для удобства
bool IsOK(void) const { return m_dwCookie != 0; }
DWORD GetCookie(void) const { return m_dwCookie; }
};
#define GIP(Itf) GlobalInterfacePointer<Itf, &IID_##Itf>
Имея данное определение класса и макрос, класс SafeRect теперь вместо исходных DWORD сохраняет GlobalInterfacePointers:
class SafeRect : public IRect {
LONG m_cRef:
// СОM reference count
// счетчик ссылок СОМ
IUnknown *m_pUnkFTM;
// cache for FTM lazy aggregate
// кэш дпя отложенного агрегирования FTM
GIP(IPoint) m_gipTopLeft;
// GIT cookie – top/left
// «закладка» GIT для верхнего/левого элемента
GIP(IPoint) m_gipBottomRight;
// GIT cookie – bottom/right
// «закладка» GIT для нижнего/правого элемента
:
:
:
}
Для инициализации элемента GlobalInterfacePointer разработчик (который выполняется в апартаменте объекта) просто регистрирует обрабатываемые указатели, вызывая метод Globalize на каждый GlobalInterfacePointer:
SafeRect::SafeRect(void) : m_cRef (0), m_pUnkFTM(0) {
IPoint *pPoint = 0;
// create instance of class Point
// создаем экземпляр класса Point
HRESULT hr = CoCreateInstance(CLSID_Point, 0, CLSCTX_INPROC, IID_Ipoint, (void**)&pPoint);
assert (SUCCEEDED(hr));
// register interface pointer in GIT
// регистрируем интерфейсный указатель в GIT
hr = m_gipTopLeft.Globalize(pPoint);
assert (SUCCEEDED(hr));
pPoint->Release();
// reference is now held in GIT
// теперь ссыпка хранится в GIT
// create instance of class Point
// создаем экземпляр класса Point
hr = CoCreateInstance(CLSID_Point, 0, CLSCTX_INPROC, IID_Iроint, (void**) &рРоint);
assert(SUCCEEDED(hr));
// register interface pointer in GIT
// регистрируем интерфейсный указатель в GIT
hr = m_gipBottomRight.Globalize(pPoint);
assert (SUCCEEDED (hr));
pPoint->Release();
// reference is now held in GIT
// теперь ссылка хранится в GIT
}
Те методы, которым нужен доступ к глобализованным указателям, могут импортировать локальную копию посредством метода Localize из GlobalInterfaсePointer:
STDMETHODIMP SafeRect::get_Top(long *pVal) {
IPoint *pPoint = 0;
// local imported pointer
// локальный импортированный указатель
HRESULT hr = m_gipTopLeft.Localize(&pPoint);
if (SUCCEEDED(hr)){
long x;
hr = pPoint->get_Coords(&x, pVal);
pPoint->Release(); }
return hr;
}
Отметим, что в силу применения маршалера свободной поточной обработки (FreeThreaded Marshaler) исходный интерфейсный указатель не может быть кэширован, а должен импортироваться при каждом вызове метода, чтобы предотвратить попытку доступа из неверного апартамента.
Предыдущий фрагмент кода может быть автоматизирован еще больше. Поскольку большинство вызовов методов в классе GlobalInterfacePointer должны будут локализовать временный указатель в самом вызове метода, то приводимый ниже класс автоматизирует импорт временного указателя и его последующее освобождение, что очень напоминает интеллектуальный указатель (smart pointer):
template <class Itf, const IID* piid> class LocalInterfacePointer {
Itf *m_pItf;
// temp imported pointer
// временный импортированный указатель
// prevent misuse
// предотвращаем неверное использование
LocalInterfacePointer(const LocalInterfacePointer&);
operator = (const LocalInterfacePointer&);
public:
LocalInterfacePointer(const GlobalInterfacePointer<Itf, piid>& rhs, HRESULT& hr) { hr = rhs.Loca1ize(&m_pItf) ; }
LocalInterfacePointer(DWORD dwCookie, HRESULT& hr) { assert(g_pGIT != 0);
hr = g_pGIT->GetInterfaceFromGlobal(dwCookie, *piid, (void**)&m_pItf); }
~LocalInterfacePointer(void) { if (m_pItf) m_pItf->Release(); }
class SafeItf : public Itf { STDMETHOD_(ULONG, AddRef) (void) = 0;
// hide
// скрытый STDMETHOD_(ULONG, Release)(void) = 0;
// hide
// скрытый
};
SafeItf *GetInterface(void) const { return (SafeItf*) m_pItf; }
SafeItf *operator ->(void) const { assert(m_pItf != 0);
return GetInterface();
}
};
#def1ne LIP(Itf) LocalInterfacePointer<Itf, &IID_##Itf>
С получением этого второго класса C++ обработка импортированных указателей становится намного проще:
STDMETHODIMP SafeRect::get_Area(long *pn) {
long top, left, bottom, right;
HRESULT hr, hr2;
// import pointers
// импортируем указатели
LIP(IPoint) lipTopLeft(m_gipTopLeft, hr);
LIP(IPoint) lipBottomRight(m_gipBottomRight, hr2);
assert(SUCCEEDED(hr) && SUCCEEDED(hr2));
// use temp tocal pointers
// используем временные локальные указатели
hr = lipTopLeft->GetCoords(&left, &top);
hr2 = lipBottomRight->GetCoords(&right, &bottom);
assert(SUCCEEDED(hr) && SUCCEEDED(hr2));
*pn = (right – left) * (bottom – top); return S_OK;
// LocalInterfacePointer auto-releases temp ptrs.
// LocalInterfacePointer сам освобождает
// временные указатели
}
Макросы GIP и LIP делают совместное использование GIT и FTM намного менее громоздким. До появления GIT использование FTM в классе с интерфейсными указателями было значительно более трудным, чем теперь обеспечивает любой из кодов, приведенных в данном разделе.
Где мы находимся?
В данной главе была описана абстракция апартаментов как логическое группирование объектов, которые подчиняются правилам параллелизма и реентерабельности. Процессы имеют один или более апартаментов. Потоки выполняются в ровно одном апартаменте, а для реализации межапартаментных связей СОМ поддерживает маршалинг объектных ссылок через границы апартаментов. Заместитель является локальным представителем объекта, постоянно находящимся в другом апартаменте. Стандартные заместители для передачи запросов методов с удаленного объекта используют ORPC. Специальные заместители имеют полную свободу для обеспечения корректной семантики. Апартамент является фундаментальной абстракцией, которая используется во всей архитектуре удаленного доступа модели СОМ.