QNX/UNIX: Анатомия параллелизма
QNX/UNIX: Анатомия параллелизма читать книгу онлайн
Книга адресована программистам, работающим в самых разнообразных ОС UNIX. Авторы предлагают шире взглянуть на возможности параллельной организации вычислительного процесса в традиционном программировании. Особый акцент делается на потоках (threads), а именно на тех возможностях и сложностях, которые были привнесены в технику параллельных вычислений этой относительно новой парадигмой программирования. На примерах реальных кодов показываются приемы и преимущества параллельной организации вычислительного процесса. Некоторые из результатов испытаний тестовых примеров будут большим сюрпризом даже для самых бывалых программистов. Тем не менее излагаемые техники вполне доступны и начинающим программистам: для изучения материала требуется базовое знание языка программирования C/C++ и некоторое понимание «устройства» современных многозадачных ОС UNIX.
В качестве «испытательной площадки» для тестовых фрагментов выбрана ОСРВ QNX, что позволило с единой точки зрения взглянуть как на специфические механизмы микроядерной архитектуры QNX, так и на универсальные механизмы POSIX. В этом качестве книга может быть интересна и тем, кто не использует (и не планирует никогда использовать) ОС QNX: программистам в Linux, FreeBSD, NetBSD, Solaris и других традиционных ОС UNIX.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
#include <sys/neutrino.h>
int SyncMutexRevive(sync_t* sync);
int SyncMutexRevive_r(sync_t* sync);
Эти функции [36]предназначены для восстановления мьютекса, который находится в состоянии блокирования
DEAD
DEAD
Ошибки выполнения функции:
ЕFAULT
EINVAL
DEAD
ETIMEDOUT
TimerTimeout()
Определить состояние мьютекса как
DEAD
SyncMutexEvent()
#include <sys/neutrino.h>
int SyncMutexEvent(sync_t* sync, struct sigevent* event);
int SyncMutexEvent_r(sync_t* sync, struct sigevent* event);
Данная функция предназначена для установки обработчика ситуации, когда мьютекс попадает в состояние
DEAD
DEAD
SyncMutexRevive()
Ошибки выполнения функции:
EAGAIN
EFAULT
sync
EINVAL
sync
Пример применения мьютекса
Модернизируем наш пример из раздела, посвященного использованию семафора для случая множества потоков источников и приемников данных. Проблема заключается в том, что когда несколько потоков одновременно попытаются вызвать функцию
push()
pop()
/* Шаблонный класс очереди данных */
template <class T> class CDataQueue {
public:
CDataQueue() { pthread_mutex_init(&_mutex, NULL); }
~CDataQueue() { pthread_mutex_destroy(&_mutex); }
void push(T _new_data) {
<b> pthread_mutex_lock(&_mutex);</b>
data_queue.push(_new_data);
data_event.reset();
<b> pthread_mutex_unlock(&_mutex);</b>
}
T pop() {
data_event.wait();
<b> pthread_mutex_lock(&_mutex);</b>
T res = data_queue.front();
data_queue.pop();
<b> pthread_mutex_unlock(&_mutex);</b>
return res;
}
private:
std::queue<T> data_queue;
event data_event;
pthread_mutex_t _mutex;
};
На первый взгляд задача очевидна: надо не допустить одновременного исполнения двух участков кода. Почему же не воспользоваться семафором, как мы описывали, когда рассказывали о способах его применения? Дело в том, что мы хотели получить универсальное средство передачи данных между потоками, не зависящее от допущений о приоритетах потоков и степени их зависимости. Когда мы строим систему реального времени, вопрос взаимного неявного влияния разных потоков на выполнение друг друга становится очень важным. Мы уже неоднократно упоминали эффект инверсии приоритетов и те способы, которыми можно ее избежать, используя мьютекс для защиты эксклюзивно используемого кода.
Сравнение и эффективность
В этом месте временно прервем наше последовательное повествование: мы закончили рассмотрение двух наиболее известных, важных и применяемых примитивов синхронизации — семафора и мьютекса. Теперь сделаем короткую остановку и проведем их взаимное сравнение, а также попробуем на примерах оценить затраты процессорной производительности, требуемые этими механизмами.
Дело в том, что на первый взгляд эти два механизма в высшей степени подобны, особенно если речь заходит о бинарном семафоре, принимающем значения счетчика 0 либо 1. Настолько подобны, что и в обсуждениях, и даже в неспециальной литературе можно встретить утверждения, что это «одно и то же». Сейчас мы увидим, что эти два сходных механизма различаются всем: и затратами процессорного времени на их обслуживание, и целями и задачами, которые они призваны решать, и временем жизни… Начнем с простой оценки затрат процессорного времени на обслуживание каждого из механизмов, после чего остальные различия станут нам намного понятнее.
Для проведения таких оценок используем уже применявшуюся нами схему «симметричных» тестов. Почему именно их? Да, здесь нам не требуются в явном виде обменные операции потоков, но воспользуемся «симметричными» тестами просто в силу минимальных переделок того, что уже было написано ранее. Итак, первый вариант теста для мьютекса ( файл sy20m.cc):
unsigned long N = 1000;
static pthread_barrier_t bstart;
static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;