-->

Параллельное и распределенное программирование на С++

На нашем литературном портале можно бесплатно читать книгу Параллельное и распределенное программирование на С++, Хьюз Камерон-- . Жанр: Программирование / Программное обеспечение / Прочая компьютерная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Параллельное и распределенное программирование на С++
Название: Параллельное и распределенное программирование на С++
Дата добавления: 16 январь 2020
Количество просмотров: 420
Читать онлайн

Параллельное и распределенное программирование на С++ читать книгу онлайн

Параллельное и распределенное программирование на С++ - читать бесплатно онлайн , автор Хьюз Камерон

В книге представлен архитектурный подход к распределенному и параллельному программированию с использованием языка С++. Здесь описаны простые методы программирования параллельных виртуальных машин и основы разработки кластерных приложений. Эта книга не только научит писать программные компоненты, предназначенные для совместной работы в сетевой среде, но и послужит надежным «путеводителем» по стандартам для программистов, которые занимаются многозадачными и многопоточными приложениями. Многолетний опыт работы привел авторов книги к использованию агентно-ориентированной архитектуры, а для минимизации затрат на обеспечение связей между объектами системы они предлагают применить методологию «классной доски».Эта книга адресована программистам, проектировщикам и разработчикам программных продуктов, а также научным работникам, преподавателям и студентам, которых интересует введение в параллельное и распределенное программирование с использованием языка С++.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 49 50 51 52 53 54 55 56 57 ... 181 ВПЕРЕД
Перейти на страницу:

Синхронизация доступа к данным

Существует разница между данными, раздел я емыми между процессами, и данными, разделяемыми между потоками. Потоки совместно используют одно и то же адресное пространство, в то время как процессы имеют отдельные адресные пространства. Если существуют два процесса А и В, то данные, объявленные в процессе А, недоступны процессу В, и наоборот. Следовательно, один из методов, используемых процессами для разделения данных, состоит в создании блока памяти, отображаемого затем на адресное пространство процессов, которые должны разделять память. Другой подход предполагает создание блока памяти, существующего вне адресного пространства обоих процессов. К типам механизмов межпроцессного взаимодействия (МПВ) относятся каналы, файлы и передача сообщений.

Именно блок памяти, разделяемый между потоками внутри одного и того же адресного пространства, и блок памяти, раздел я емый между процессами вне обоих адресных пространств, требует синхронизации данных. Память, разделяемая между потоками и процессами, показана на рис. 5 .3.

Синхронизация данных необходима для управления состоянием «гонок», а также для того, чтобы позволить параллельным потокам или процессам безопасно получить доступ к блоку памяти. Синхронизация данных позволяет управлять считыванием и модификацией данных в блоке памяти. В многопоточной среде параллельный доступ к общей памяти, глобальным переменным и файлам обязательно должен быть синхронизирован. Что касается программного кода задачи, то синхронизация данных необходима в тех его блоках, где делается попытка получить доступ к блоку памяти, глобальным переменным или файлам, разделяемым с другими параллельно выполняемыми процессами или потоками. Такие блоки кода называются критическими разделами. В качестве критического раздела может выступать любой блок кода, который изменяет позицию файлового указателя, записывает данные в файл, закрывает файл и считывает или устанавливает глобальные переменные либо структуры данных. Выделение таких задач, которые выполняют чтение или запись данных, является одним из этапов управления параллельным доступом к совместно используемой памяти.

Модель РРАМ

Модель PRAM (Parallel Random-Access Machine — машина с параллельным произвольным доступом) — это упрощенная модель с N процессорами, обозначаемыми P 1 , Р 2 , Р 5 , ... Р n , которые разделяют одну глобальную память. Все процессоры одновременно получают доступ для чтения и записи к совместно используемой глобальной памяти. Каждый из этих теоретических процессоров может получить доступ к разделяе м ой глобальной памяти в течение одного непрерываемого интервала времени. Модель PRAM включает алгоритмы параллельного, а также исключающего чтения и записи. Алгоритмы параллельного чтения позволяют нескольким процессорам одновременно использовать одну и ту же область памяти без како г о бы то ни было искажения данных. Алгоритмы параллельной записи позволяют нескольким процессорам записывать данные в разделяемую область памяти. Алгоритмы исключающего чтения используются для получения гарантии того, что никакие два процессора никогда не будут считывать информацию из одной и той же области памяти одновременно. Алгоритмы исключающей записи гарантируют, что никакие два процессора никогда не будут записывать данные в одну и ту же область памяти одновременно. Модель PRAM можно использовать для определения характера параллельного доступа к общей памяти со стороны нескольких задач.

Рис. 5.3. Память, разделяемая между потоками и процессами

Параллельный и исключающий доступ к памяти

Алгоритмы параллельного и исключаю щ его чтения и записи можно скомбинировать и получить следующие типы объединенных алгоритмов, которые можно реализовать для организации доступа к данным:

• исключаю щ ее чтение и исключаю щ ая запись (exclusive read and exclusive write-EREW);

• параллельное чтение и исключающая запись (concurrent read and exclusive write-CREW);

• исключаю щ ее чтение и параллельная запись (exclusive read and concurrent write-ERCW);

• параллельное чтение и параллельная запись (concurrent read and concurrent write-CRCW).

Эти алгоритмы можно рассматривать как стратегии доступа, реализуемые задачами, которые совместно используют данные (рис. 5.4). Алгоритм EREW подразу м евает последовательный доступ к разделяемой памяти, т.е. к общей памяти в любой момент времени может получить доступ только одна задача. Примером стратегии доступа EREW может служить вариант реализации модели потоков «производитель-потребитель», рассмотренный в главе 4. Доступ к очереди, содержащей имена файлов, может быть ограничен исключающей записью «изготовителя» и исключающим чтением «потребителя». В любой момент времени доступ к очереди может быть разрешен только для одной задачи. Стратегия CREW позволяет множественный доступ для чтения общей памяти и исключающий доступ для записи в нее данных. Это означает отсутствие ограничений на количество задач, которые могут одновременно читать разделяемую память, но записывать в нее данные может только одна задача. При этом параллельное чтение может происходить одновременно с записью данных в общую память. При использовании этой стратегии доступа все читающие задачи могут прочитать различные значения, поскольку во время чтения значения из общей памяти записывающая задача может его модифицировать. Стратегия доступа ERCW — это прямая противоположность стратегии CREW. При использовании стратегии ERCW разрешены параллельные записи в общую память, но лишь одна задача может читать ее в любой момент времени. Стратегия доступа CRCW позволяет множеству задач выполнять параллельное чтение и запись.

Для этих четырех типов алгоритмов требуются различные уровни и типы синхронизации. Их диапазон довольно широк: от стратегии доступа, реализация которой требует минимальной синхронизации, до стратегии доступа, реализация которой требует максимальной синхронизации. Наша задача— реализовать эти стратегии, поддерживая целостность данных и удовлетворительную производительность системы. EREW — самая простая для реализации стратегия, поскольку она предполагает, по сути, только последовательную обработку. На первый взгляд самой простой может показаться стратегия CRCW, но она таит в себе массу трудностей. А ведь это только кажется, что если к памяти можно получить доступ без ограничений, то в ней и речь не идет о какой бы то ни было стратегии. Все как раз наоборот: CRCW — самая трудная для реализации стратегия, которая требует максимальной синхронизации.

Рис. 5.4. Стратегии доступа EREW, CREW, ERCW и CRCW

Что такое семафоры

Семафор — это механизм синхронизации, который можно использовать для управления отношениями между параллельно выполняющимися программными компонентами и реализации стратегий доступа к данным. Семафор — это переменная специального вида, которая может быть доступна только для выполнения узкого диапазона операций. Семафор используется для синхронизации доступа процессов и потоков к разделяемой модифицируемой памяти или для управления доступом к устройствам или другим ресурсам. Семафор можно рассматривать как ключ к ресурсам. Этим ключом может владеть в любой момент времени только один процесс или поток. Какал бы задача ни владела этим ключом, он надежно запирает (блокирует) нужные ей ресурсы для ее монопольного использования. Блокирование ресурсов заставляет другие задачи, которые желают воспользоваться этими ресурсами, ожидать до тех пор, пока они не будут разблокированы и снова станут доступными. После разблокирования ресурсов следующая задача, ожидающая семафор, получает его и доступ к ресурсам. Какал задача будет следующей, определяется стратегией планирования, действующей для данного потока или процесса.

1 ... 49 50 51 52 53 54 55 56 57 ... 181 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название