Сущность технологии СОМ. Библиотека программиста
Сущность технологии СОМ. Библиотека программиста читать книгу онлайн
В этой книге СОМ исследуется с точки зрения разработчика C++. Написанная ведущим специалистом по модели компонентных объектов СОМ, она раскрывает сущность СОМ, помогая разработчикам правильно понять не только методы модели программирования СОМ, но и ее основу. Понимание мотивов создания СОМ и ее аспектов, касающихся распределенных систем, чрезвычайно важно для тех разработчиков, которые желают пойти дальше простейших приложений СОМ и стать по-настоящему эффективными СОМ-программистами. Показывая, почему СОМ для распределенных систем (Distributed СОМ) работает именно так, а не иначе, Дон Бокс дает вам возможность применять эту модель творчески и эффективно для ежедневных задач программирования.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Вспомним правило, гласящее, что все запросы QueryInterface на объект относительно IUnknown должны возвращать точно такое же значение указателя. Именно так в СОМ обеспечивается идентификация объектов. В то же время Спецификация СОМ определенно разрешает возвращать другие значения указателей в ответ на запросы QueryInterface относительно любых других типов интерфейсов, кроме IUnknown. Это означает, что для нечасто используемых интерфейсов объект может динамически выделять память для vptr по требованию, не заботясь о возврате того же самого динамически выделенного блока памяти каждый раз, когда запрашивается какой-либо интерфейс. Эта технология временного (transient) размещения композитов впервые была описана в «белой книге» Microsoft Поваренная книга для программистов СОМ (Microsoft white paper The СОМ Programmer's Cookbook), написанной Криспином Госвеллом (Crispin Goswell) ( http://www.microsoft.com/oledev). В этой «белой книге» такие временные интерфейсы называются отделяемыми (tearoff).
Реализация отделяемого интерфейса подобна реализации интерфейса с использованием композиции. Для отделяемого интерфейса должен быть определен второй класс, наследующий тому интерфейсу, который он будет реализовывать. Чтобы обеспечить идентификацию, QueryInterface отделяемого интерфейса должен делегировать управление функции QueryInterface основного класса. Два основных различия заключаются в том, что:
1) главный объект динамически размещает отделяемый интерфейс вместо того, чтобы иметь элемент данных экземпляра, и
2) отделяемый композит должен содержать явный обратный указатель на главный объект, так как технология фиксированного смещения, используемая в композиции, здесь не работает, поскольку отделяемый интерфейс изолирован от основного объекта. Следующий класс реализует IBoat как отделяемый интерфейс:
class CarBoat : public ICar
{
LONG m_cRef;
CarBoat (void): m_cRef(0) {}
public:
// IUnknown methods
// методы IUnknown
STDMETHODIMP QueryInterface(REFIID, void**);
STDMETHODIMP_(ULONG) AddRef(void);
STDMETHODIMP_(ULONG) Release(void);
// IVehicle methods
// методы IVehicle
STDMETHODIMP GetMaxSpeed(long *pMax);
// ICar methods
// методы ICar
STDMETHODIMP Brake(void);
// define nested class that implements IBoat
// определяем вложенный класс, реализующий IBoat
struct XBoat : public IBoat
{
LONG m_cBoatRef;
// back pointer to main object is explicit member
// обратный указатель на главный объект – явный член
CarBoat *m_pThis;
inline CarBoat* This()
{
return m_pThis;
}
XBoat(CarBoat *pThis);
~XBoat(void);
STDMETHODIMP QueryInterface(REFIID, void**);
STDMETHODIMP_(ULONG) AddRef(void);
STDMETHODIMP_(ULONG) Release(void);
STDMETHODIMP GetMaxSpeed(long *pval);
STDMETHODIMP Sink(void);
};
// note: no data member of type Xboat
// заметим: нет элементов данных типа Xboat
};
Для QueryInterface главного объекта необходимо динамически разместить новый отделяемый интерфейс – каждый раз, когда запрашивается IBoat:
STDMETHODIMP CarBoat::QueryInterface(REFIID riid, void **ppv)
{
if (riid == IID_IBoat)
*ppv = static_cast<IBoat*>(new XBoat(this));
else if (riid == IID_IUnknown)
*ppv = static_cast<IUnknown*>(this);
:
:
:
Каждый раз при получении запроса на интерфейс IBoat размещается новый отделяемый интерфейс. Согласно стандартной практике QueryInterface вызова AddRef посредством результирующего указателя: ((IUnknown*)*ppv)->AddRef();
AddRef будет обрабатывать непосредственно из QueryInterface только отделяемый интерфейс. Важно то, что главный объект остается в памяти столько времени, сколько существует отделяемый интерфейс. Простейший путь обеспечить это – заставить сам отделяемый интерфейс представлять неосвобожденную ссылку. Это можно реализовать в разработчике и деструкторе отделяемого интерфейса:
CarBoat::XBoat::XBoat(CarBoat *pThis) : m_cBoatRef(0), m_pThis(pThis)
{
m_pThis->AddRef();
}
CarBoat::XBoat::~XBoat(void)
{
m_pThis->Release();
}
Как и в случае с композицией, методу QueryInterface отделяемого интерфейса требуется идентифицировать объект, делегируя освобождение функции главного объекта. Однако отделяемый интерфейс может выявлять запросы на тот интерфейс (интерфейсы), который он сам реализует, и просто возвращать указатель, обработанный AddRef, себе самому:
STDMETHODIMP CarBoat::XBoat::QueryInterface(REFIID riid, void**ppv)
{
if (riid != IID_IBoat) return This()->QueryInterface(riid, ppv);
*ppv = static_cast<IBoat*>(this);
reinterpret_cast<IUnknown*>(*ppv)->AddRef();
return S_OK;
}
Ввиду того, что отделяемый интерфейс должен самоуничтожаться, когда он больше не нужен, он должен поддерживать свой собственный счетчик ссылок и уничтожать себя, когда этот счетчик достигнет нуля. Как отмечалось ранее, деструктор отделяемого интерфейса освободит главный объект до того, как сам исчезнет из памяти:
STDMETHODIMP_(ULONG) CarBoat::XBoat::AddRef (void)
{
return InterlockedIncrement(&m_cRef);
}
STDMETHODIMP_(ULONG) CarBoat::XBoat::Release(void)
{
ULONG res = InterlockedDecrement(&m_cBoatRef);
if (res == 0) delete this;
// dtor releases main object
// деструктор освобождает главный объект
return res;
}
Как и в случае с композицией, метод This() можно использовать в любых методах отделяемого интерфейса, которым требуется получить статус главного объекта. Разница состоит в том, что отделяемым интерфейсам требуется явный обратный указатель, в то время как нормальные композиты могут использовать фиксированные смещения, выделяя по четыре байта на композит.
На первый взгляд, отделяемые интерфейсы кажутся лучшей из всех возможностей. Когда интерфейс не используется, то на его служебные данные отводится нуль байт объекта. Когда же интерфейс используется, объект косвенно тратит 4 байта на служебные данные отделяемого интерфейса. Подобное впечатление базируется на нескольких обманчивых предположениях. Во-первых, затраты на работающий отделяемый интерфейс составляют отнюдь не только 4 байта памяти для его vptr. Отделяемому интерфейсу требуются также обратный указатель и счетчик ссылок [1]. Во-вторых, несмотря на возможность использования специального распределителя памяти (custom memory allocator ), отделяемому интерфейсу потребуется по крайней мере 4 дополнительных байта на выравнивание и/или заполнение заголовков динамически выделенной памяти, используемых С-библиотекой для реализации malloc/operator new . Это означает, что объект действительно экономит 4 байта, когда интерфейс не используется. Но когда интерфейс используется, отделяемый интерфейс тратит как минимум 12 байт, если подключен специальный распределитель памяти, и 16 байт, если, по умолчанию, подключен оператор new. Если интерфейс запрашивается редко, то такая оптимизация имеет смысл, особенно если клиент освобождает этот интерфейс вскоре после получения. Если же клиент хранит отделяемый интерфейс в течение всего времени жизни объекта, то преимущества отделяемого интерфейса теряются.