Сущность технологии СОМ. Библиотека программиста
Сущность технологии СОМ. Библиотека программиста читать книгу онлайн
В этой книге СОМ исследуется с точки зрения разработчика C++. Написанная ведущим специалистом по модели компонентных объектов СОМ, она раскрывает сущность СОМ, помогая разработчикам правильно понять не только методы модели программирования СОМ, но и ее основу. Понимание мотивов создания СОМ и ее аспектов, касающихся распределенных систем, чрезвычайно важно для тех разработчиков, которые желают пойти дальше простейших приложений СОМ и стать по-настоящему эффективными СОМ-программистами. Показывая, почему СОМ для распределенных систем (Distributed СОМ) работает именно так, а не иначе, Дон Бокс дает вам возможность применять эту модель творчески и эффективно для ежедневных задач программирования.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
HRESULT GetClassFile([in, string) OLECHAR *pwszFileName, [out] CLSID *pclsid);
Для определения типа объекта, содержащегося в файле, GetClassFile использует информацию из заголовка файла, а также информацию из реестра.
После того как определены класс и хост-машина, СОМ исследует ROT (Running Object Table – таблица исполняющихся объектов) на целевой хост-машине для того, чтобы выяснить, является ли объект уже активированным. Таблица ROT является инструментом SCM, который преобразует произвольные моникеры в экземпляры объектов, исполняющихся на локальной хост-машине. Ожидается, что постоянные объекты будут регистрировать себя в локальной ROT во время загрузки. Чтобы представить файловое имя постоянного объекта в качестве моникера, СОМ предусматривает стандартный тип моникера – файловый моникер, который оборачивает имя файла в интерфейс IMoniker. Файловые моникеры могут создаваться либо путем передачи файлового имени в МkParseDisplayName , либо вызовом явной API-функции CreateFileMoniker:
HRESULT CreateFileMoniker( [in, string] const OLECHAR *pszFileName, [out] IMoniker **ppmk);
Если постоянный объект уже зарегистрировал в ROT свой файловый моникер, то CoGetInstanceFromFile просто возвращает указатель на уже работающий объект. Если же объект в ROT не найден, то СОМ создает новый экземпляр файлового класса и инициализирует его из постоянного объекта с помощью метода IPersistFile::Load этого экземпляра:
[object, uuid(0000010b-0000-0000-C000-000000000046)]
interface IPersistFile : IPersist
{
// called by CoGetInstanceFromFile to initialize object
// вызывается функцией CoGetInstanceFromFile для
// инициализации объекта
HRESULT Load(
[in, string] const OLECHAR * pszFileName, [in] DWORD grfMode
);
// remaining methods deleted for clarity // остальные методы удалены для ясности
}
Реализация объекта отвечает за загрузку из файла всех постоянных элементов и за саморегистрацию в локальной таблице ROT – с целью убедиться, что для каждого файла в каждый момент может исполняться только один экземпляр:
STDMETHODIMP::Load(const OLECHAR *pszFileName, DWORD grfMode)
{
// read in persisted object state
// считываем сохраненное состояние объекта
HRESULT hr = this->MyReadStateFromFile(pszFile, grfMode);
if (FAILED(hr)) return hr;
// get pointer to ROT from SCM
// берем указатель на ROT от SCM
IRunningObjectTable *prot = 0;
hr = GetRunningObjectTable(0, &prot);
if (SUCCEEDED(hr))
{
// create a file moniker to register in ROT
// создаем файловый моникер для регистрации в ROT
IMoniker *pmk = 0;
hr = CreateFileMoniker(pszFileName, &pmk);
if (SUCCEEDED(hr))
{
// register self in ROT
// саморегистрация в ROT
hr = prot->Register(0, this, pmk, &m_dwReg);
pmk->Release();
}
prot->Release();
}
return hr;
}
Метод IPersistFile::Load нового созданного экземпляра будет вызван диспетчером SCM во время выполнения CoGetInstanceFromFile . В приведенном выше примере для получения указателя на интерфейс IRunningObjectTable в SCM используется API-функция СОМ GetRunningObjectTable. Этот интерфейс затем используется для регистрации своего моникера в ROT, так что последующие вызовы CoGetInstanceFromFile , использующие то же файловое имя, не будут создавать новые объекты, а вместо этого возвратят ссылки на этот объект [3].
Существование File Moniker обусловлено двумя причинами. Во-первых, он нужен, чтобы позволить объектам самим регистрироваться в ROT, чтобы их мог найти CoGetInstanceFromFile. Во-вторых, чтобы скрыть от клиента использование CoGetInstanceFromFile за интерфейсом IMoniker. Реализация File Moniker из BindToObject просто вызывает CoGetInstanceFromFile:
// pseudo-code from OLE32.DLL // псевдокод из OLE32.DLL
STDMETHODIMP FileMoniker::BindToObject(IBindCtx *pbc,
IMoniker *pmkToLeft,
REFIID riid, void **ppv) {
// assume failure – на случай сбоя
*ppv = О;
HRESULT hr = E_FAIL;
if (pmkToLeft == 0) {
// no moniker to left – слева моникеров нет
MULTI_QI mqi = { &riid, 0, 0 };
COSERVERINFO *pcsi;
DWORD grfMode;
DWORD dwClsCtx;
// these three parameters are attributes of the BindCtx
// эти три параметра являются атрибутами BindCtx
this->MyGetFromBindCtx(pbc, &pcsi, &grfMode, &dwClsCtx);
hr = CoGetInstanceFromFile(pcsi, 0, 0, dwClsCtx,
grfMode, this->m_pszFileName,
1, &mqi);
if (SUCCEEDED(hr))
*ppv = mqi.pItf;
} else {
// there's a moniker to the left – слева есть моникер
// ask object to left for IClassActivator
// or IClassFactory
// запрашиваем объект слева от IClassActivator или от
// IClassFactory
}
return hr; }
При таком поведении File Moniker следующая функция, вызывающая CoGetInstanceFromFile
HRESULT GetCornelius(IApe * &rpApe)
{
OLECHAR *pwszObject = OLESTR(\\server\public\cornelius.chmp);
MULTI_QI mqi = { &IID_IApe, 0, 0 };
HRESULT hr = CoGetInstanceFromFile(0, 0, 0, CLSCTX_SERVER, STCM_READWRITE, pwszObject, 1, &mqi);
if (SUCCEEDED(hr)) rpApe = mqi.pItf;
else rpApe = 0;
return hr;
}
может быть упрощена, если вместо этого использовать вызов CoGetObject:
HRESULT GetCornelius(IApe * &rpApe)
{
OLECHAR *pwszObject = OLESTR(\\server\public\cornelius.chmp);
return CoGetObject(pwszObject, 0, IID_IApe, (void**)&rpApe);
}
Как и в предыдущем случае, когда использовался Class Moniker, уровень изоляции, обеспеченный CoGetObject, позволяет клиенту задавать сколь угодно сложную стратегию активации, не меняя ни единой строки кода.
Время жизни сервера
В предыдущих разделах было показано, как СОМ автоматически загружает DLL с целью перенесения реализации объектов в адресное пространство клиентских программ. Однако пока не обсуждалось, как и когда эти DLL выгружаются. Вообще говоря, серверные DLL могут предотвращать преждевременную выгрузку, но именно клиент выбирает момент, когда DLL фактически перестают использоваться. Клиенты, желающие освободить неиспользуемые DLL, вызывают API-функцию СОМ CoFreeUnusedLibraries:
void CoFreeUnusedLibraries(void);
Обычно эта подпрограмма вызывается клиентами в свободное время с целью собрать мусор в своем адресном пространстве. При вызове CoFreeUnusedLibraries СОМ опрашивает каждую из загруженных DLL, чтобы выявить, какие из них не используются. Это делается посредством вызова в каждой DLL функции DllCanUnloadNow, которая должна быть явно экспортирована из этой динамически подключаемой библиотеки.
Функция DllCanUnloadNow, которую экспортирует DLL каждого сервера, должна соответствовать следующей сигнатуре:
HRESULT DllCanUnloadNow(void);
Если DLL желает быть освобожденной, то она возвращает S_OK. Если DLL хочет остаться загруженной, то она возвращает S_FALSE. Серверные DLL должны оставаться загруженными по крайней мере до тех пор, пока сохраняются интерфейсные указатели на ее объекты. Это означает, что в DLL должен быть счетчик всех существующих ссылок на объекты. Чтобы упростить реализацию этого, большинство DLL содержат одну переменную для счетчика блокировок (lock count) и используют две функции для автоматического инкрементирования и декрементирования этого счетчика: