-->

Язык программирования Python

На нашем литературном портале можно бесплатно читать книгу Язык программирования Python, Сузи Роман Арвиевич-- . Жанр: Программирование. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Язык программирования Python
Название: Язык программирования Python
Дата добавления: 16 январь 2020
Количество просмотров: 495
Читать онлайн

Язык программирования Python читать книгу онлайн

Язык программирования Python - читать бесплатно онлайн , автор Сузи Роман Арвиевич

Курс посвящен одному из бурно развивающихся и популярных в настоящее время сценарных языков программирования — Python. Язык Python позволяет быстро создавать как прототипы программных систем, так и сами программные системы, помогает в интеграции программного обеспечения для решения производственных задач. Python имеет богатую стандартную библиотеку и большое количество модулей расширения практически для всех нужд отрасли информационных технологий. Благодаря ясному синтаксису изучение языка не составляет большой проблемы. Написанные на нем программы получаются структурированными по форме, и в них легко проследить логику работы. На примере языка Python рассматриваются такие важные понятия как: объектно–ориентированное программирование, функциональное программирование, событийно–управляемые программы (GUI–приложения), форматы представления данных (Unicode, XML и т.п.). Возможность диалогового режима работы интерпретатора Python позволяет существенно сократить время изучения самого языка и перейти к решению задач в соответствующих предметных областях. Python свободно доступен для многих платформ, а написанные на нем программы обычно переносимы между платформами без изменений. Это обстоятельство позволяет применять для изучения языка любую имеющуюся аппаратную платформу.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 21 22 23 24 25 26 27 28 29 ... 62 ВПЕРЕД
Перейти на страницу:

indices(dims[, type]) Возвращает массив индексов заданной длины по каждому измерению с изменением поочередно по каждому изменению. Например, indices([2, 2])[1] дает двумерный массив [[0, 1], [0, 1]].

innerproduct(a, b) Внутреннее произведение двух массивов (по общему измерению). Для успешной операции a.shape[-1] должен быть равен b.shape[-1]. Форма результата будет a.shape[: — 1] + b.shape[: — 1]. Элементы пропадающего измерения попарно умножаются и получающиеся произведения суммируются

load(file) Чтение массива из файла file. Файл должен быть открыт в бинарном режиме

loads(s) Возвращает объект, соответствующий бинарному представлению, заданному в строке

nonzero(a) Возвращает индексы ненулевых элементов одномерного массива

ones(shape[, type]) Массив из единиц заданной формы shape и обозначения типа type

outerproduct(a, b) Внешнее произведение a и b

product(a[, axis]) Произведение по измерению axis массива a

put(a, indices, b) Присваивание частям массива, a[n] = b[n] для всех индексов indices

putmask(a, mask, b) Присваивание a элементов из b, для которых маска mask имеет значение истина

ravel(a) Превращение массива в одномерный. Аналогично reshape(a, (-1,))

repeat(a, n[, axis]) Повторяет элементы массива a n раз по измерению axis

reshape(a, shape) Возвращает массив нужной формы (нового массива не создает). Количество элементов в исходном и новом массивах должно совпадать

resize(a, shape) Возвращает массив с произвольной новой формой shape. Размер исходного массива не важен

searchsorted(a, i) Для каждого элемента из i найти место в массиве a. Массив a должен быть одномерным и отсортированным. Результат имеет форму массива i

shape(a) Возвращает форму массива a

sometrue(a[, axis]) Логическое ИЛИ по всему измерению axis массива a

sort(a[, axis]) Сортировка элементов массива по заданному измерению

sum(a[, axis]) Суммирование по измерению axis массива a

swapaxes(a, axis1, axis1) Смена измерений (частный случай транспонирования)

take(a, indices[, axis]) Выбор частей массива a на основе индексов indices по измерению axis

trace(a[, k[, axis1[, axis2]]]) Сумма элементов вдоль диагонали, то есть add.reduce(diagonal(a, k, axis1, axis2))

transpose(a[, axes]) Перестановка измерений в соответствии с axes, либо, если axes не заданы — расположение их в обратном порядке

where(cond, a1, a2) Выбор элементов на основании условия cond из a1 (если не нуль) и a2 (при нуле) поэлементно. Равносилен choose(not_equal(cond, 0), (y, x)). Формы массивов–аргументов a1 и a2 должны совпадать

zeros(shape[, type]) Массив из нулей заданной формы shape и обозначения типа type

В этой таблице в качестве обозначения типа type можно указывать рассмотренные выше константы: Int, Float и т.п.

Модуль Numeric также определяет константы e (число e) и pi (число пи).

Модуль LinearAlgebra

Модуль LinearAlgebra содержит алгоритмы линейной алгебры, в частности нахождение определителя матрицы, решений системы линейных уравнений, обращение матрицы, нахождение собственных чисел и собственных векторов матрицы, разложение матрицы на множители: Холецкого, сингулярное, метод наименьших квадратов.

Функция LinearAlgebra.determinant() находит определитель матрицы:

Листинг

>>> import Numeric, LinearAlgebra

>>> print LinearAlgebra.determinant(

… Numeric.array([[1, — 2],

… [1, 5]]))

7

Функция LinearAlgebra.solve_linear_equations() решает линейные уравнения вида ax=b по заданным аргументам a и b:

Листинг

>>> import Numeric, LinearAlgebra

>>> a = Numeric.array([[1.0, 2.0], [0.0, 1.0]])

>>> b = Numeric.array([1.2, 1.5])

>>> x = LinearAlgebra.solve_linear_equations(a, b)

>>> print «x =", x

x = [-1.8 1.5]

>>> print «Проверка:", Numeric.dot(a, x) - b

Проверка: [ 0. 0.]

Когда матрица a имеет нулевой определитель, система имеет не единственное решение и возбуждается исключение LinearAlgebraError:

Листинг

>>> a = Numeric.array([[1.0, 2.0], [0.5, 1.0]])

>>> x = LinearAlgebra.solve_linear_equations(a, b)

Traceback (most recent call last):

File "<stdin>", line 1, in ?

File "/usr/local/lib/python2.3/site–packages/Numeric/LinearAlgebra.py», line 98,

in solve_linear_equations raise LinAlgError, 'Singular matrix'

LinearAlgebra.LinAlgError: Singular matrix

Функция LinearAlgebra.inverse() находит обратную матрицу. Однако не следует решать линейные уравнения с помощью LinearAlgebra.inverse() умножением на обратную матрицу, так как она определена через LinearAlgebra.solve_linear_equations():

Листинг

def inverse(a):

return solve_linear_equations(a, Numeric.identity(a.shape[0]))

Функция LinearAlgebra.eigenvalues() находит собственные значения матрицы, а LinearAlgebra.eigenvectors() - пару: собственные значения, собственные вектора:

Листинг

>>> from Numeric import array, dot

>>> from LinearAlgebra import eigenvalues, eigenvectors

>>> a = array([[-5, 2], [2, — 7]])

>>> lmd = eigenvalues(a)

>>> print «Собственные значения:", lmd

Собственные значения: [-3.76393202–8.23606798]

>>> (lmd, v) = eigenvectors(a)

>>> print «Собственные вектора:"

Собственные вектора:

>>> print v

[[ 0.85065081 0.52573111]

[-0.52573111 0.85065081]]

>>> print «Проверка:", dot(a, v[0]) - v[0] * lmd[0]

Проверка: [ -4.44089210e–16 2.22044605e–16]

Проверка показывает, что тождество выполняется с достаточно большой точностью (числа совсем маленькие, практически нули): собственные числа и векторы найдены верно.

Модуль RandomArray

В этом модуле собраны функции для генерации массивов случайных чисел различных распределений и свойств. Их можно применять для математического моделирования.

Функция RandomArray.random() создает массивы из псевдослучайных чисел, равномерно распределенных в интервале (0, 1):

Листинг

>>> import RandomArray

>>> print RandomArray.random(10) # массив из 10 псевдослучайных чисел

[ 0.28374212 0.19260929 0.07045474 0.30547682 0.10842083 0.14049676

0.01347435 0.37043894 0.47362471 0.37673479]

>>> print RandomArray.random([3,3]) # массив 3x3 из псевдослучайных чисел

[[ 0.53493741 0.44636754 0.20466961]

[ 0.8911635 0.03570878 0.00965272]

[ 0.78490953 0.20674807 0.23657821]]

Функция RandomArray.randint() для получения массива равномерно распределенных чисел из заданного интервала и заданной формы:

Листинг

>>> print RandomArray.randint(1, 10, [10])

[8 1 9 9 7 5 2 5 3 2]

>>> print RandomArray.randint(1, 10, [10])

[2 2 5 5 7 7 3 4 3 7]

Можно получать и случайные перестановки с помощью RandomArray.permutation():

Листинг

>>> print RandomArray.permutation(6)

[4 0 1 3 2 5]

>>> print RandomArray.permutation(6)

[1 2 0 3 5 4]

Доступны и другие распределения для получения массива нормально распределенных величин с заданным средним и стандартным отклонением:

Листинг

>>> print RandomArray.normal(0, 1, 30)

[-1.0944078 1.24862444 0.20415567–0.74283403 0.72461408–0.57834256

0.30957144 0.8682853 1.10942173–0.39661118 1.33383882 1.54818618

0.18814971 0.89728773–0.86146659 0.0184834 -1.46222591–0.78427434

1.09295738–1.09731364 1.34913492–0.75001568–0.11239344 2.73692131

— 0.19881676–0.49245331 1.54091263–1.81212211 0.46522358–0.08338884]

Следующая таблица приводит функции для других распределений:

Функция и ее аргументы Описание

F(dfn, dfd, shape=[]) F–распределение

1 ... 21 22 23 24 25 26 27 28 29 ... 62 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название