-->

Программирование на языке Ruby

На нашем литературном портале можно бесплатно читать книгу Программирование на языке Ruby, Фултон Хэл-- . Жанр: Программирование. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Программирование на языке Ruby
Название: Программирование на языке Ruby
Дата добавления: 16 январь 2020
Количество просмотров: 514
Читать онлайн

Программирование на языке Ruby читать книгу онлайн

Программирование на языке Ruby - читать бесплатно онлайн , автор Фултон Хэл
Ruby — относительно новый объектно-ориентированный язык, разработанный Юкихиро Мацумото в 1995 году и позаимствовавший некоторые особенности у языков LISP, Smalltalk, Perl, CLU и других. Язык активно развивается и применяется в самых разных областях: от системного администрирования до разработки сложных динамических сайтов. Книга является полноценным руководством по Ruby — ее можно использовать и как учебник, и как справочник, и как сборник ответов на вопросы типа «как сделать то или иное в Ruby». В ней приведено свыше 400 примеров, разбитых по различным аспектам программирования, и к которым автор дает обстоятельные комментарии. Издание предназначено для программистов самого широкого круга и самой разной квалификации, желающих научиться качественно и профессионально работать на Ruby.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

humans_turn = false # Остановить поток.

# Теперь можно посмотреть, нет ли в хэше scenario хода,

# сделанного пользователем...

Конечно, настоящие шахматные программы работают не так.

13.2.9. Реализация параллельных итераторов

Предположим, что нужно параллельно обходить несколько объектов, то есть для каждого объекта найти первый элемент, потом второй, потом третий и т.д.

Рассмотрим следующий пример. Пусть

compose
— имя магического метода, который выполняет композицию итераторов. Допустим еще, что у каждого объекта есть стандартный итератор
each
и что каждый объект возвращает по одному элементу на каждой итерации.

arr1 = [1, 2, 3, 4]

arr2 = [5, 10, 15, 20]

compose(arr1, arr2) {|a,b| puts "#{а} и #{b}" }

# Должно быть напечатано:

# 1 и 5

# 2 и 10

# 3 и 15

# 4 и 20

Можно было бы, конечно, использовать для этой цели

zip
. Но если нужно более элегантное решение, при котором все элементы не будут храниться одновременно, то без потоков не обойтись. Такое решение представлено в листинге 13.7.

Листинг 13.7. Параллельные итераторы

def compose(*objects)

 threads = []

 for obj in objects do

  threads << Thread.new(obj) do |myobj|

   me = Thread.current

   me[:queue] = []

   myobj.each {|x| me[:queue].push(x) }

  end

 end

 list = [0]                     # Фиктивное значение, отличное от nil.

 while list.nitems > 0 do       # Еще есть не nil.

  list = []

  for thr in threads

   list << thr[:queue].shift    # Удалить по одному из каждого.

  end

  yield list if list.nitems > 0 # He вызывать yield, если все равны nil.

 end

end

x = [1, 2, 3, 4, 5, 6, 7, 8]

y = "    первыйn    второйn    третийn четвертыйn    пятыйn"

z = %w[a b с d e f]

compose(x, у, z) {|a,b,c| p [a, b, c] }

# Выводится:

# [1, "    первыйn", "a"]

# [2, "    второйn", "b"]

# [3, "    третийn", "c"]

# [4, " четвертыйn", "d"]

# [5, "     пятыйn", "e"]

# [6, nil, "f"]

# [7, nil, nil]

# [8, nil, nil]

Обратите внимание: мы не предполагаем, что все объекты имеют одно и то же число элементов. Если один итератор доходит до конца раньше остальных, то он будет генерировать значения

nil
до тех пор, пока не закончит работу «самый длинный» итератор.

Конечно, можно написать и более общий метод, который на каждой итерации будет обрабатывать более одного элемента. (В конце концов, не все итераторы возвращают по одному значению за раз.) Можно было бы в первом параметре передавать число значений для каждого итератора.

Можно также пользоваться произвольными итераторами (а не только стандартным

each
). Их имена можно было бы передавать в виде строк, а вызывать с помощью метода
send
. Много чего еще можно придумать.

Впрочем, мы полагаем, что приведенного кода достаточно для большинства целей. Вариации на эту тему оставляем читателю в качестве упражнения.

13.2.10. Параллельное рекурсивное удаление

Забавы ради напишем код, который будет удалять дерево каталогов. Процедура рекурсивного удаления использует потоки. Как только обнаруживается очередной подкаталог, мы запускаем новый поток, который будет обходить его и удалять содержимое.

Созданные в ходе работы программы потоки хранятся в массиве

threads
. Поскольку это локальная переменная, у каждого потока будет собственная копия массива. Раз к ней может обращаться всего один поток, синхронизировать доступ не надо.

Отметим также, что в блок потока передается полное имя файла

fullname
, чтобы не нужно было беспокоиться по поводу того, что поток обращается к переменной, которую кто-то еще изменяет. Поток делает для себя локальную копию
fn
этой переменной.

Прежде чем удалять очередной каталог, мы должны дождаться завершения всех созданных в процессе его обхода потоков.

def delete_all(dir)

 threads = []

 Dir.foreach(dir) do |e|

  next if [".",".."].include? e # Пропустить . и ..

  fullname = dir + "/" + e

  if FileTest.directory?(fullname)

   threads << Thread.new(fullname) {|fn| delete_all(fn) }

  else

   File.delete(fullname)

  end

 end

 threads.each { |t| t.join }

 Dir.delete(dir)

end

delete_all("/tmp/stuff")

Будет ли работать такая программа быстрее, чем ее вариант без потоков? В наших тестах получалось по-разному. Возможно, это зависит от операционной системы и структуры конкретного каталога — глубины, количества файлов и т.д.

Перейти на страницу:
Комментариев (0)
название