-->

QNX/UNIX: Анатомия параллелизма

На нашем литературном портале можно бесплатно читать книгу QNX/UNIX: Анатомия параллелизма, Цилюрик Олег Иванович-- . Жанр: Программирование / ОС и Сети. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
QNX/UNIX: Анатомия параллелизма
Название: QNX/UNIX: Анатомия параллелизма
Дата добавления: 16 январь 2020
Количество просмотров: 313
Читать онлайн

QNX/UNIX: Анатомия параллелизма читать книгу онлайн

QNX/UNIX: Анатомия параллелизма - читать бесплатно онлайн , автор Цилюрик Олег Иванович

Книга адресована программистам, работающим в самых разнообразных ОС UNIX. Авторы предлагают шире взглянуть на возможности параллельной организации вычислительного процесса в традиционном программировании. Особый акцент делается на потоках (threads), а именно на тех возможностях и сложностях, которые были привнесены в технику параллельных вычислений этой относительно новой парадигмой программирования. На примерах реальных кодов показываются приемы и преимущества параллельной организации вычислительного процесса. Некоторые из результатов испытаний тестовых примеров будут большим сюрпризом даже для самых бывалых программистов. Тем не менее излагаемые техники вполне доступны и начинающим программистам: для изучения материала требуется базовое знание языка программирования C/C++ и некоторое понимание «устройства» современных многозадачных ОС UNIX.

В качестве «испытательной площадки» для тестовых фрагментов выбрана ОСРВ QNX, что позволило с единой точки зрения взглянуть как на специфические механизмы микроядерной архитектуры QNX, так и на универсальные механизмы POSIX. В этом качестве книга может быть интересна и тем, кто не использует (и не планирует никогда использовать) ОС QNX: программистам в Linux, FreeBSD, NetBSD, Solaris и других традиционных ОС UNIX.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 14 15 16 17 18 19 20 21 22 ... 106 ВПЕРЕД
Перейти на страницу:

Заметим здесь вскользь (в дальнейшем нам представится возможность использовать эти знания), что помимо «продуктивных» потоков (компонент системы и пользовательских приложений) в системе всегда существует один «паразитный» поток, запущенный с приоритетом 0 (idle-поток). Он «выбирает» весь остаток процессорного времени в те периоды, когда все имеющиеся в системе продуктивные потоки перейдут в блокированные состояния (ожидания). Подобная практика хорошо известна и реализуется также в большинстве других операционных систем.

Отличия от POSIX

Если следовать POSIX-стандарту, то некоторые из атрибутов невозможно переопределить до фактического создания этого стандарта (их можно изменить позже в самом коде потока, но иногда это не совсем правильное решение). Все эти возможности относятся к асинхронному завершению потока; детали функционирования этого механизма рассматриваются позже. К подобного рода атрибутам относятся:

• запретить асинхронное завершение (отмену) потока;

• установить тип завершаемости потока;

• определить, что должно происходить при доставке потоку сигналов.

QNX расширяет возможности POSIX, позволяя по условию OR установить соответствующие биты-флаги в поле

flags
атрибутной записи, прежде чем будет произведен вызов, создающий поток. Не существует функций вида
pthread_attr_set_*()
, эквивалентных этим установкам. К этим флагам относятся:

• 

PTHREAD_CANCEL_ENABLE
— запрос на завершение будет обрабатываться в соответствии с типом завершаемости, установленным для потока (значение по умолчанию);

• 

PTHREAD_CANCEL_DISABLE
— запросы на завершение будут отложены;

• 

PTHREAD_CANCEL_ASYNCHRONOUS
— если завершение разрешено, отложенные или текущие запросы будут выполнены немедленно;

• 

PTHREAD_CANCEL_DEFERRED
— если завершение разрешено, запросы на завершение будут отложены до достижения точки завершаемости (значение по умолчанию);

• 

PTHREAD_MULTISIG_ALLOW
— завершать по сигналу все потоки в процессе (POSIX-умолчание);

• 

PTHREAD_MULTISIG_DISALLOW
— завершать по сигналу только тот поток, который принял сигнал.

После запуска потока все атрибуты, связанные с завершаемостью потока, могут быть изменены вызовами

pthread_setcancelstate()
и
pthread_setcanceltype()
.

Передача параметров потоку

Зачастую каждый поток из группы последовательно создаваемых потоков, выполняющих одну и ту же функцию, нужно запускать со своим индивидуальным блоком данных (параметром потока). Для этого предназначен 4-й параметр вызова

pthread_create()
— указатель на блок данных типа
void*
. Характерно, что это может быть произвольная структура данных сколь угодно сложного типа, структуризацию которой вызывающий
pthread_create()
код и функция потока должны понимать единообразно; никакого контроля соответствия типов на этапе вызова не производится.

Достаточно часто встречающийся на практике образец многопоточного кода — это циклическая процедура ожидания наступления некоторого условия (события), после которого порождается новый экземпляр потока, призванный обслужить наступившее событие (типичная схема всего разнообразия многопоточных сетевых серверов). В таких случаях код, порождающий потоки, выглядит подобно следующему фрагменту:

// функция потока:

void* ThreadProc(void* data) {

 // ... выполняется обработка, используя структуру *(DataParam*)data

 return NULL;

}

// порождающий потоки код:

while (true) {

 // инициализация области параметров

 struct DataParam data(...);

 if ( /* ожидаем нечто */ )

  pthread_create(NULL, &attr, &ThreadProc, &data);

}

Этот простейший код крайне опасен: при быстрых циклах и, что намного важнее, непредсказуемых моментах повторных созданий экземпляров потоков из вызывающего цикла необходимо обеспечить, чтобы используемое в функции потока

ThreadProc()
значение данных было адекватным. Оно может быть изменено в вызывающем коде или даже, более того, просто разрушено при выходе из локальной области видимости, как в следующем коде:

// порождающий потоки код:

while(true) {

 if ( /* ожидаем нечто */ ) {

  struct DataParam data(...);

  pthread_create(NULL, &attr, &ThreadProc, &data);

 }

 // здесь может идти достаточно длительная обработка

}

Здесь блок данных, выделяемый в стеке порождающего потока, к началу его использования в дочернем потоке может быть просто уничтожен.

Единственно надежный способ обеспечить требование актуальности передаваемых данных - это создание копии блока параметров непосредственно при входе в функцию потока, например так (если определена операция копирования):

// функция потока:

void* ThreadProc(void* data) {

 DataParam copy = *(DataParam*)data;

 // выполняется обработка, используя структуру copy

 return NULL;

}

или так (если определен инициализирующий конструктор структуры данных):

// функция потока:

void* ThreadProc(void* data) {

 DataParam copy(*(DataParam*)data);

 // ... выполняется обработка, используя структуру copy

 return NULL;

}

Но и этот код оказывается некорректен. При порождении потока нам нужно, чтобы инициализация копии переданных данных в теле функции потока произошла до того, как на очередном цикле оригинал этих данных будет разрушен или изменен. Но дисциплины диспетчеризации равнозначных потоков (в данном случае родительского и порожденного) в операционной системе никак не регламентируют (и не имеют права этого делать!) порядок их выполнения после точки ветвления —

pthread_create()
.

Обеспечить актуальность копии переданных данных можно несколькими искусственными способами:

1. Передачей в качестве аргумента

pthread_create()
специально сделанной ранее временной копии экземпляра данных, например:

1 ... 14 15 16 17 18 19 20 21 22 ... 106 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название