-->

Язык программирования Python

На нашем литературном портале можно бесплатно читать книгу Язык программирования Python, Сузи Роман Арвиевич-- . Жанр: Программирование. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Язык программирования Python
Название: Язык программирования Python
Дата добавления: 16 январь 2020
Количество просмотров: 494
Читать онлайн

Язык программирования Python читать книгу онлайн

Язык программирования Python - читать бесплатно онлайн , автор Сузи Роман Арвиевич

Курс посвящен одному из бурно развивающихся и популярных в настоящее время сценарных языков программирования — Python. Язык Python позволяет быстро создавать как прототипы программных систем, так и сами программные системы, помогает в интеграции программного обеспечения для решения производственных задач. Python имеет богатую стандартную библиотеку и большое количество модулей расширения практически для всех нужд отрасли информационных технологий. Благодаря ясному синтаксису изучение языка не составляет большой проблемы. Написанные на нем программы получаются структурированными по форме, и в них легко проследить логику работы. На примере языка Python рассматриваются такие важные понятия как: объектно–ориентированное программирование, функциональное программирование, событийно–управляемые программы (GUI–приложения), форматы представления данных (Unicode, XML и т.п.). Возможность диалогового режима работы интерпретатора Python позволяет существенно сократить время изучения самого языка и перейти к решению задач в соответствующих предметных областях. Python свободно доступен для многих платформ, а написанные на нем программы обычно переносимы между платформами без изменений. Это обстоятельство позволяет применять для изучения языка любую имеющуюся аппаратную платформу.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 11 12 13 14 15 16 17 18 19 ... 62 ВПЕРЕД
Перейти на страницу:

print [x for x in it2]

Примечание:

Если функция не возвращает значения явно, она возвращает None, что и использовано в примере выше.

Функция enumerate()

Эта функция создает итератор, нумерующий элементы другого итератора. Результирующий итератор выдает кортежи, в которых первый элемент — номер (начиная с нуля), а второй — элемент исходной последовательности:

Листинг

>>> print [x for x in enumerate(«abcd»)]

[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'd')]

Функция sorted()

Эта функция, появившаяся в Python 2.4, позволяет создавать итератор, выполняющий сортировку:

Листинг

>>> sorted('avdsdf')

['a', 'd', 'd', 'f', 's', 'v']

Далее рассматриваются функции модуля itertools.

Функция itertools.chain()

Функция chain() позволяет сделать итератор, состоящий из нескольких соединенных последовательно итераторов. Итераторы задаются в виде отдельных аргументов. Пример:

Листинг

from itertools import chain

it1 = iter([1,2,3])

it2 = iter([8,9,0])

for i in chain(it1, it2):

print i,

даст в результате

Листинг

1 2 3 8 9 0

Функция itertools.repeat()

Функция repeat() строит итератор, повторяющий некоторый объект заданное количество раз:

Листинг

for i in itertools.repeat(1, 4):

print i,

1 1 1 1

Функция itertools.count()

Бесконечный итератор, дающий целые числа, начиная с заданного:

Листинг

for i in itertools.count(1):

print i,

if i > 100:

break

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101

Функция itertools.cycle()

Можно бесконечно повторять и некоторую последовательность (или значения другого итератора) с помощью функции cycle():

Листинг

tango = [1, 2, 3]

for i in itertools.cycle(tango):

print i,

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2

3 1 2 3 1

2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2

3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 …

Функции itertools.imap(), itertools.starmap() и itertools.ifilter()

Аналогами map() и filter() в модуле itertools являются imap() и ifilter(). Отличие imap() от map() в том, что вместо значения от преждевременно завершившихся итераторов объект None не подставляется. Пример:

Листинг

for i in map(lambda x, y: (x,y), [1,2], [1,2,3]):

print i,

(1, 1) (2, 2) (None, 3)

from itertools import imap

for i in imap(lambda x, y: (x,y), [1,2], [1,2,3]):

print i,

(1, 1) (2, 2)

Здесь следует заметить, что обычная функция map() нормально воспринимает итераторы в любом сочетании с итерабельными (поддающимися итерациям) объектами:

Листинг

for i in map(lambda x, y: (x,y), iter([1,2]), [1,2,3]):

print i,

(1, 1) (2, 2) (None, 3)

Функция itertools.starmap() подобна itertools.imap(), но имеет всего два аргумента. Второй аргумент — последовательность кортежей, каждый кортеж которой задает набор параметров для функции (первого аргумента):

Листинг

>>> from itertools import starmap

>>> for i in starmap(lambda x, y: str(x) + y, [(1,'a'), (2,'b')]):

… print i,

1a 2b

Функция ifilter() работает как filter(). Кроме того, в модуле itertools есть функция ifilterfalse(), которая как бы добавляет отрицание к значению функции:

Листинг

for i in ifilterfalse(lambda x: x > 0, [1, — 2, 3, — 3]):

print i,

— 2–3

Функции itertools.takewhile() и itertools.dropwhile()

Некоторую новизну вносит другой вид фильтра: takewhile() и его «отрицательный» аналог dropwhile(). Следующий пример поясняет их принцип действия:

Листинг

for i in takewhile(lambda x: x > 0, [1, — 2, 3, — 3]):

print i,

print

for i in dropwhile(lambda x: x > 0, [1, — 2, 3, — 3]):

print i,

1

— 2 3–3

Таким образом, takewhile() дает значения, пока условие истинно, а остальные значения даже не берет из итератора (именно не берет, а не высасывает все до конца!). И, наоборот, dropwhile() ничего не выдает, пока выполняется условие, зато потом выдает все без остатка.

Функция itertools.izip()

Функция izip() аналогична встроенной zip(), но не тратит много памяти на построение списка кортежей, так как итератор выдает их строго по требованию.

Функция itertools.groupby()

Эта функция дебютировала в Python 2.4. Функция принимает два аргумента: итератор (обязательный) и необязательный аргумент — функцию, дающую значение ключа: groupby(iterable[, func]). Результатом является итератор, который возвращает двухэлементный кортеж: ключ и итератор по идущим подряд элементам с этим ключом. Если второй аргумент опущен, элемент итератора сам является ключом. В следующем примере группируются идущие подряд положительные и отрицательные элементы:

Листинг

import itertools, math

lst = map(lambda x: math.sin(x*.4), range(30))

for k, i in itertools.groupby(lst, lambda x: x > 0):

print k, list(i)

Функция itertools.tee()

Эта функция тоже появилась в Python 2.4. Она позволяет клонировать итераторы. Первый аргумент — итератор, подлежащий клонированию. Второй (N) — количество необходимых копий. Функция возвращает кортеж из N итераторов. По умолчанию N=2. Функция имеет смысл, только если итераторы задействованы более или менее параллельно. В противном случае выгоднее превратить исходный итератор в список.

Собственный итератор

Для полноты описания здесь представлен пример итератора, определенного пользователем. Если пример не очень понятен, можно вернуться к нему после изучения объектно–ориентированного программирования:

Листинг

class Fibonacci:

«"«Итератор последовательности Фибоначчи до N»""

def __init__(self, N):

self.n, self.a, self.b, self.max = 0, 0, 1, N

def __iter__(self):

# сами себе итератор: в классе есть метод next()

return self

def next(self):

if self.n < self.max:

a, self.n, self.a, self.b = self.a, self.n+1, self.b, self.a+self.b

return a

else:

raise StopIteration

# Использование:

for i in Fibonacci(100):

print i,

Простые генераторы

Разработчики языка не остановились на итераторах. Как оказалось, в интерпретаторе Python достаточно просто реализовать простые генераторы. Под этим термином фактически понимается специальный объект, вычисления в котором продолжаются до выработки очередного значения, а затем приостанавливаются до возникновения необходимости в выдаче следующего значения. Простой генератор формируется функцией–генератором, которая синтаксически похожа на обычную функцию, но использует специальный оператор yield для выдачи следующего значения. При вызове такая функция ничего не вычисляет, а создает объект с интерфейсом итератора для получения значений. Другими словами, если функция должна возвращать последовательность, из нее довольно просто сделать генератор, который будет функционально эквивалентной «ленивой» реализацией. Ленивыми называются вычисления, которые откладываются до самого последнего момента, когда получаемое в результате значение сразу используется в другом вычислении.

1 ... 11 12 13 14 15 16 17 18 19 ... 62 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название