Параллельное и распределенное программирование на С++
Параллельное и распределенное программирование на С++ читать книгу онлайн
В книге представлен архитектурный подход к распределенному и параллельному программированию с использованием языка С++. Здесь описаны простые методы программирования параллельных виртуальных машин и основы разработки кластерных приложений. Эта книга не только научит писать программные компоненты, предназначенные для совместной работы в сетевой среде, но и послужит надежным «путеводителем» по стандартам для программистов, которые занимаются многозадачными и многопоточными приложениями. Многолетний опыт работы привел авторов книги к использованию агентно-ориентированной архитектуры, а для минимизации затрат на обеспечение связей между объектами системы они предлагают применить методологию «классной доски».Эта книга адресована программистам, проектировщикам и разработчикам программных продуктов, а также научным работникам, преподавателям и студентам, которых интересует введение в параллельное и распределенное программирование с использованием языка С++.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
//...
int Fd[2];
Pipe(Fd);
ifstream IPipe(Fd[0]) ;
ofstream OPipe(Fd[1]) ;
будут созданы объектно-ориентированные каналы. Объект IPipe будет играть роль входного потока, а объект OPipe— выходного. После создания эти потоки можно применять для связи между параллельно выполняемыми процессами с использованием потоково г о представления и операторов вставки (<<) и извлечения (>>). Для С++-сред, которые поддерживают метод attach(), дескриптор файла можно связать с объектами классов ifstream, ofstream или fstream, используя следующий синтаксис.
// Листинг 11.20. Создание канала и использование
// функции attach()
int Fd[2];
ofstream OPipe;
//.. .
pipe(Fd);
//.. .
OPipe.attach(Fd[1]);
//.. .
OPipe << Value << endl;
Такой способ использования объектно-ориентированных каналов предполагает существование сыновнего процесса, который может считывать из них информацию. В программе 11.1 для создания двух процессов используется fork-инструкция. Родительский процесс отправляет значение сыновнему процессу с помощью iostreams-ориентированного канала.
// Программа 11.1
1 #include <unistd.h>
2 #include <iostream.h>
3 #include <fstream.h>
4 #include <math.h>
5 #include <sys/wait.h> 6
7 8 9
10 int main(int argc, char *argv[])
11 {
12
13 int Fd[2];
14 int Pid;
15 float Value;
16 int Status;
17 if(pipe(Fd) != 0) {
18 cerr « «Ошибка при создании канала " « endl;
19 exit(l);
20 }
21 Pid = fork();
22 if(Pid == 0){
23 ifstream IPipe(Fd[0]);
24 IPipe » Value;
25 cout « «От процесса-родителя получено значение» << Value << endl;
26 IPipe.close();
27 }
28 else{
29 ofstream OPipe(Fd[l]);
30 OPipe « M_PI « endl;
31 wait(&Status);
32 OPipe.close();
33
34 }
35
36 }
Вспомните, что значение 0, возвращаемое функцией fork(), принадлежит сыновнему процессу. В программе 11.1 канал создается при выполнении инструкции, расположенной на строке 17. А при выполнении инструкции, расположенной на строке 29, родительский процесс открывает канал для записи. Файловый дескриптор Fd[1] означает «записывающий» конец канала. К этому концу канала (благо д аря вызову конструктора на строке 29) присоединяется объект класса ofstream. К «считывающему» концу канала присоединяется объект класса ifstream (строка 23). Сыновний процесс открывает канал для чтения и получает доступ к дескриптору файла, поскольку он вместе со средой родителя наслелует и дескрипторы файлов. Таким образом, любые файлы, которые открыты в среде родителя, будут оставаться открытыми и в среде наследника, если операционнал система не получит явные инструкции, основанные на системной функции fcntl. Помимо наследования открытых файлов, маркеры внутрифайловых позиций остаются там, где они были в момент порождения сыновнего процесса, чтобы сыновний процесс также получил доступ к маркеру позиции. При изменении позиции в родительском процессе маркер сыновнего также смещается. В этом случае мы могли бы реализовать потоковое представление данных, не создавал интерфейсный класс. Просто присоединив файловые дескрипторы канала к объектам классов ofstream и ifstream, мы сможем использовать операторы вставки (<<) и извлечения (»). Аналогично любой класс, в котором определены операторы ">>" и "<<", может выполнять операции вставки данных в канал и извлечения их оттуда без какого-либо дополнительного программирования. В программе 11.1 родительский процесс поме щ ает значение M_PI в канал (строка 30), а сыновний процесс извлекает это з н ачение из канала, используя оператор ">>" (строка24). Инструкции по выполнению и компиляции этой программы приведены в разделе «Профиль программы 11.1».
f
(Профиль программы 11.1
Имя программыprogram11-1.cc
Оп и сание
Программа 11.1 демонстрирует использование объектно-ориентированного потока c использованием анонимных системных каналов. Для создания двух процессов, |которые взаимодействуют между собой с помощью операторов вставки («) и из-!влечения (»), программа использует функцию fork().
Требуемые заголовки
<wait.h>,<unistd.h>, <iostream.h>, <fstream.h>, <math.h>.
Инс т рукци и по компиляции и компоновке программ
C++ -о program11-1 program11-1.cc
Среда для т ес ти рова ни я
Solaris 8, SuSE Linux 7.1.
Инструкции по выполнению
./program11-1
Компилятор gnu С++ также под д ерживает метод attach (). Этот мето д можно использовать д ля связи файловых д ескрипторов с объекта м и классов ifstream и ofstream (листинг 11.21).
// Листинг 11.21. Подключение файловых дескрипторов к
// объекту класса ofstream
int main (int argc, char *argv[]) {
int Fd[2];
ofstream Out;
pipe(Fd);
Out.attach(Fd[l]); // - . .
// Межпроцессное взаимодействие. //. . .
Out.close( );
}
При вызове функции Out.attach(Fd[1] ) объект класса ofstream связывается с файловым дескриптором канала. Теперь Любая информация, которая будет помещена в объект Out, в действительности запишется в канал. Использование операторов извлечения и вставки для выполнения автоматического преобразования формата является основным достоинством использования семейства fstream -классов в сочетании с канальной связью. Возможность применять пользовательские средства извлечения и вставки избавляет программиста от определенных трудностей, которые могут иметь место при программировании каналов связи. Поэтому вместо явного перечисления размеров данных, записываемых в канал и читаемых из него, при управлении доступом для чтения-записи мы используем только количество передаваемых через канал элементов, что существенно упрощает весь процесс. К тому же такое «снижение себестоимости» немного упрощает параллельное программирование. Рекоменлуемый нами метод состоит в использовании архитектуры, в основе которой лежит принцип «разделяй и властвуй». Главное — правильно расставить компоненты «по своим местам» — и программирование станет более простым. Например, поскольку канал связывается с объектами классов ofstream и ifstream, мы можем использовать информацию, хранимую компо н ентом ios, для определения состояния канала. Компоненты преобразования iostreams-классов можно использовать для выполнения автоматического преобразования данных, помещаемых в один конец канала и извлекаемых из его другого конца. Использование каналов вместе с iostream-классами также позволяет программисту интегрировать стандартные контейнеры и алгоритмы с использованием межпроцессного взаимодействия на основе канала. На рис. 11.9 показаны взаимоотношения между объектами классов ifstream, ofstream, каналом и средствами вставки и извлечения при организации межпроцессного взаимодействия.