-->

Операционная система UNIX

На нашем литературном портале можно бесплатно читать книгу Операционная система UNIX, Робачевский Андрей Михайлович-- . Жанр: ОС и Сети. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Операционная система UNIX
Название: Операционная система UNIX
Дата добавления: 16 январь 2020
Количество просмотров: 432
Читать онлайн

Операционная система UNIX читать книгу онлайн

Операционная система UNIX - читать бесплатно онлайн , автор Робачевский Андрей Михайлович

Книга посвящена семейству операционных систем UNIX и содержит информацию о принципах организации, идеологии и архитектуре, объединяющих различные версии этой операционной системы.

В книге рассматриваются: архитектура ядра UNIX (подсистемы ввода/вывода, управления памятью и процессами, а также файловая подсистема), программный интерфейс UNIX (системные вызовы и основные библиотечные функции), пользовательская среда (командный интерпретатор shell, основные команды и утилиты) и сетевая поддержка в UNIX (протоколов семейства TCP/IP, архитектура сетевой подсистемы, программные интерфейсы сокетов и TLI).

Для широкого круга пользователей.

 

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 66 67 68 69 70 71 72 73 74 ... 156 ВПЕРЕД
Перейти на страницу:

Отложенные вызовы

Отложенный вызов определяет функцию, вызов которой будет произведен ядром системы через некоторое время. Например, в SVR4 любая подсистема ядра может зарегистрировать отложенный вызов следующим образом:

int co_ID = timeout(void (*fn)(), caddr_t arg, long delta);

где

fn()
определяет адрес функции, которую необходимо вызвать, при этом ей будет передан аргумент
arg
, а сам вызов будет произведен через
delta
тиков.

Ядро производит вызов

fn()
в системном контексте, таким образом функция отложенного вызова не должна обращаться к адресному пространству текущего процесса (поскольку не имеет к нему отношения), а также не должна переходить в состояние сна.

Отложенные вызовы применяются для выполнения многих функций, например:

□ Выполнение ряда функций планировщика и подсистемы управления памятью

□ Выполнение ряда функций драйверов устройств для событий, вероятность ненаступления которых относительно велика. Примером может служить модуль протокола TCP, реализующий таким образом повторную передачу сетевых пакетов по тайм-ауту

□ Опрос устройств, не поддерживающих прерывания

Заметим, что функции отложенных вызовов выполняются в системном контексте, а не в контексте прерывания. Вызов этих функций выполняется не обработчиком прерывания таймера, а отдельным обработчиком отложенных вызовов, который запускается после завершения обработки прерывания таймера. При обработке прерывания таймера система проверяет необходимость запуска тех или иных функций отложенного вызова и устанавливает соответствующий флаг для них. В свою очередь обработчик отложенных вызовов проверяет флаги и запускает необходимые в системном контексте.

Эти функции хранятся в системной таблице отложенных вызовов, организация которой отличается для различных версий UNIX. Поскольку просмотр этой таблицы осуществляется каждый тик при обработке высокоприоритетного прерывания, для минимизации влияния этой операции на функционирование системы в целом, организация этой таблицы должна обеспечивать быстрый поиск нужных функций. Например, в 4.3BSD и SCO UNIX таблица отложенных вызовов организована в виде списка, отсортированного по времени запуска. Каждый элемент хранит разницу между временем вызова функции и временем вызова функции предыдущего элемента таблицы. На каждом тике значение этой величины уменьшается на единицу для первого элемента таблицы. Когда это значение становится равным 0, производится вызов соответствующей функции и запись удаляется. На рис. 3.14 приведена схема организации этой таблицы.

Операционная система UNIX - img_39.jpeg

Рис. 3.14. Организация таблицы отложенных вызовов

Алармы

Процесс может запросить ядро отправить сигнал по прошествии определенного интервала времени. Существуют три типа алармов — реального времени (real-time), профилирования (profiling) и виртуального времени (virtual time). С каждым из этих типов связан таймер интервала (interval timer, или itimer). Значение itimer уменьшается на единицу при каждом тике. Когда значение itimer достигает нуля, процессу отправляется соответствующий сигнал.

Указанные таймеры обладают следующими характеристиками:

ITIMER_REAL
Этот таймер используется для отсчета реального времени. Когда значение таймера становится равным нулю, процессу отправляется сигнал SIGALRM.
ITIMER_PROF
Этот таймер уменьшается только когда процесс выполняется в режиме ядра или задачи. Когда значение таймера становится равным нулю, процессу отправляется сигнал SIGPROF.
ITIMER_VIRT
Этот таймер уменьшается только когда процесс выполняется в режиме задачи. Когда значение таймера становится равным нулю, процессу отправляется сигнал SIGVTALRM.

В версиях BSD UNIX для установки таймеров всех трех типов используется системный вызов settimer(2), для которого значение таймера устанавливается в микросекундах [34]. Ядро системы преобразует это значение в тики, на основании которых и производится уменьшение таймера. Напомним, что тик является максимальным временным разрешением, которое может обеспечить система. В версиях System V для установки таймера реального времени используется вызов alarm(2), позволяющий указать интервал в секундах. UNIX SVR4 позволяет установить таймеры высокого разрешения с помощью системного вызова hrtsys(2), для которого время указывается в микросекундах. С помощью этого вызова также достигается совместимость с BSD, которая обеспечивается библиотечной функцией settimer(3). Аналогично, в BSD UNIX вызов alarm(3) реализован в виде библиотечной функции.

Не следует, однако, заблуждаться насчет высокого разрешения таймеров реального времени. На самом деле их точность может быть довольно низкой. Допустим, что значение таймера реального времени, установленного каким-либо процессом, достигло нуля. При этом ядро отправит этому процессу сигнал

SIGALRM
. Однако процесс сможет получить и обработать этот сигнал, только когда он будет выбран планировщиком и поставлен на выполнение. В зависимости от приоритета процесса и текущей загрузки системы это может привести к существенным задержкам и, как следствие, к неточностям определения временного интервала. Таймеры реального времени высокого разрешения обладают достаточной точностью лишь для больших интервалов времени или для высокоприоритетных процессов. Тем не менее и для таких процессов получение сигнала может быть задержано, если в текущий момент процесс выполняется в режиме ядра и не может быть приостановлен.

Два других типа таймера обладают более высокой точностью, поскольку не имеют отношения к реальному течению времени. Однако их точность для малых временных интервалов может определяться следующим фактором.

При обработке таймера процессу засчитывается тик целиком, даже если, предположим, процесс выполнялся лишь часть тика. Для временных интервалов порядка тика это может внести значительную погрешность.

Контекст процесса

Каждый процесс UNIX имеет контекст, под которым понимается вся информация, требуемая для описания процесса. Эта информация сохраняется, когда выполнение процесса приостанавливается, и восстанавливается, когда планировщик предоставляет процессу вычислительные ресурсы. Контекст процесса состоит из нескольких частей:

□ Адресное пространство процесса в режиме задачи. Сюда входят код, данные и стек процесса, а также другие области, например, разделяемая память или код и данные динамических библиотек.

□ Управляющая информация. Ядро использует две основные структуры данных для управления процессом — proc и user. Сюда же входят данные, необходимые для отображения виртуального адресного пространства процесса в физическое.

□ Окружение процесса. Переменные окружения процесса представляют собой строки пар вида:

 переменная=значение

которые наследуются дочерним процессом от родительского и обычно хранятся в нижней части стека. Окружение процесса упоминалось в предыдущих главах, там же были показаны функции, позволяющие получить или изменить переменные окружения.

□ Аппаратный контекст. Сюда входят значения общих и ряда системных регистров процессора. К системным регистрам, в частности, относятся:

1 ... 66 67 68 69 70 71 72 73 74 ... 156 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название