-->

UNIX: разработка сетевых приложений

На нашем литературном портале можно бесплатно читать книгу UNIX: разработка сетевых приложений, Стивенс Уильям Ричард-- . Жанр: ОС и Сети. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
UNIX: разработка сетевых приложений
Название: UNIX: разработка сетевых приложений
Дата добавления: 16 январь 2020
Количество просмотров: 379
Читать онлайн

UNIX: разработка сетевых приложений читать книгу онлайн

UNIX: разработка сетевых приложений - читать бесплатно онлайн , автор Стивенс Уильям Ричард

Новое издание книги, посвященной созданию веб-серверов, клиент-серверных приложений или любого другого сетевого программного обеспечения в операционной системе UNIX, — классическое руководство по сетевым программным интерфейсам, в частности сокетам. Оно основано на трудах Уильяма Стивенса и полностью переработано и обновлено двумя ведущими экспертами по сетевому программированию. В книгу включено описание ключевых современных стандартов, реализаций и методов, она содержит большое количество иллюстрирующих примеров и может использоваться как учебник по программированию в сетях, так и в качестве справочника для опытных программистов.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Листинг 30.12. Функция my_lock_init: блокировка файла

//server/lock_fcntl.c

 1 #include "unp.h"

 2 static struct flock lock_it, unlock_it;

 3 static int lock_fd = -1;

 4 /* fcntl() не выполнится, если не будет вызвана функция my_lock_init() */

 5 void

 6 my_lock_init(char *pathname)

 7 {

 8  char lock_file[1024];

 9  /* копируем строку вызывающего процесса на случай, если это константа */

10  strncpy(lock_file, pathname, sizeof(lock_file));

11  lock_fd = Mkstemp(lock_file);

12  Unlink(lock_file); /* но lock_fd остается открытым */

13  lock_it.l_type = F_WRLCK;

14  lock_it.l_whence = SEEK_SET;

15  lock_it.l_start = 0;

16  lock_it.l_len = 0;

17  unlock_it.l_type = F_UNLCK;

18  unlock_it.l_whence = SEEK_SET;

19  unlock_it.l_start = 0;

20  unlock_it.l_len = 0;

21 }

9-12
 Вызывающий процесс задает шаблон для имени файла в качестве аргумента функции
my_lock_init
, и функция
mkstemp
на основе этого шаблона создает уникальное имя файла. Затем создается файл с этим именем и сразу же вызывается функция
unlink
, в результате чего имя файла удаляется из каталога. Если в программе впоследствии произойдет сбой, то файл исчезнет безвозвратно. Но пока он остается открытым в одном или нескольких процессах (иными словами, пока счетчик ссылок для этого файла больше нуля), сам файл не будет удален. (Отметим, что между удалением имени файла из каталога и закрытием открытого файла существует фундаментальная разница.)

13-20
 Инициализируются две структуры flock: одна для блокирования файла, другая для снятия блокировки. Блокируемый диапазон начинается с нуля (
l_whence =SEEK_SET, l_start=0
). Значение
l_len
равно нулю, то есть блокирован весь файл. В этот файл ничего не записывается (его длина всегда равна нулю), но такой тип блокировки в любом случае будет правильно обрабатываться ядром.

ПРИМЕЧАНИЕ

Сначала автор инициализировал эти структуры при объявлении:

static struct flock lock_it = { F_WRLCK, 0, 0, 0, 0 };

static struct flock unlock_it = { F_UNLCK, 0, 0, 0, 0 };

но тут возникли две проблемы: у нас нет гарантии, что константа SEEK_SET равна нулю, но, что более важно, стандарт POSIX не регламентирует порядок расположения полей этой структуры. POSIX гарантирует только то, что требуемые поля присутствуют в структуре. POSIX не гарантирует какого-либо порядка следования полей структуры, а также допускает наличие в ней полей, не относящихся к стандарту POSIX. Поэтому когда требуется инициализировать эту структуру (если только не нужно инициализировать все поля нулями), это приходится делать через фактический код С, а не с помощью инициализатора при объявлении структуры.

Исключением из этого правила является ситуация, когда инициализатор структуры обеспечивается реализацией. Например, при инициализации взаимного исключения в POSIX в главе 26 мы писали:

pthread_mutex_t mlock = PTHREAD_MUTEX_INITIALIZER;

Тип данных pthread_mutex_t — это некая структура, но инициализатор предоставляется реализацией и может быть различным для разных реализаций.

В листинге 30.13 показаны две функции, которые устанавливают и снимают блокировку с файла. Они представляют собой вызовы функции

fcntl
, использующие структуры, инициализированные в листинге 30.12.

Листинг 30.13. Функции my_lock_wait (установление блокировки файла) и my_lock_release (снятие блокировки файла)

//server/lock_fcntl.c

23 void

24 my_lock_wait()

25 {

26  int rc;

27  while ((rc = fcntl(lock_ld, F_SETLKW, &lock_it)) < 0 {

28   if (errno == EINTR)

29    continue;

30   else

31    errsys("fcntl error for my_lock_wait");

32  }

33 }

34 void

35 my_lock_release()

36 {

37  if (fcntl(lock_fd, F_SETLKW, &unlock_it)) < 0)

38   errsys("fcntl error for my_lock_release");

39 }

Новая версия нашего сервера с предварительным порождением процессов работает теперь под SVR4, гарантируя, что в данный момент времени только один дочерний процесс блокирован в вызове функции

accept
. Сравнивая строки 2 и 3 в табл. 30.1 (результаты для серверов Digital Unix и BSD/OS), мы видим, что такой тип блокировки увеличивает время, затрачиваемое центральным процессором на узле сервера.

ПРИМЕЧАНИЕ

Веб-сервер Apache (http://www.apache.org) использует технологию предварительного порождения процессов, причем если позволяет реализация, все дочерние процессы блокируются в вызове функции accept, иначе используется блокировка файла для защиты вызова accept.

Эффект наличия слишком большого количества дочерних процессов

Мы можем проверить, возникает ли в данной версии сервера эффект «общей побудки», рассмотренный в предыдущем разделе. Как и раньше, время работы ухудшается пропорционально числу избыточных дочерних процессов.

Распределение клиентских соединений между дочерними процессами

Используя функцию, показанную в листинге 30.10, мы можем исследовать распределение клиентских запросов между свободными дочерними процессами. Результат показан в табл. 30.2. Операционная система распределяет блокировки файла равномерно между ожидающими процессами, и такое поведение характерно для нескольких протестированных нами систем.

Перейти на страницу:
Комментариев (0)
название