Архитектура операционной системы UNIX (ЛП)
Архитектура операционной системы UNIX (ЛП) читать книгу онлайн
Настоящая книга посвящена описанию внутренних алгоритмов и структур, составляющих основу операционной системы (т. н. «ядро»), и объяснению их взаимосвязи с программным интерфейсом. Таким образом, она будет полезна для работающих в различных операционных средах. При работе с книгой было бы гораздо полезнее обращаться непосредственно к исходному тексту системных программ, но книгу можно читать и независимо от него. Во-вторых, эта книга может служить в качестве справочного руководства для системных программистов, из которого последние могли бы лучше уяснить себе механизм работы ядра операционной системы и сравнить между собой алгоритмы, используемые в UNIX, и алгоритмы, используемые в других операционных системах. Наконец, программисты, работающие в среде UNIX, могут углубить свое понимание механизма взаимодействия программ с операционной системой и посредством этого прийти к написанию более эффективных и совершенных программ.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
}
Рисунок 11.22
ГЛАВА 12. МНОГОПРОЦЕССОРНЫЕ СИСТЕМЫ
В классической постановке для системы UNIX предполагается использование однопроцессорной архитектуры, состоящей из одного ЦП, памяти и периферийных устройств. Многопроцессорная архитектура, напротив, включает в себя два и более ЦП, совместно использующих общую память и периферийные устройства (Рисунок 12.1), располагая большими возможностями в увеличении производительности системы, связанными с одновременным исполнением процессов на разных ЦП. Каждый ЦП функционирует независимо от других, но все они работают с одним и тем же ядром операционной системы. Поведение процессов в такой системе ничем не отличается от поведения в однопроцессорной системе — с сохранением семантики обращения к каждой системной функции — но при этом они могут открыто перемещаться с одного процессора на другой. Хотя, к сожалению, это не приводит к снижению затрат процессорного времени, связанного с выполнением процесса. Отдельные многопроцессорные системы называются системами с присоединенными процессорами, поскольку в них периферийные устройства доступны не для всех процессоров. За исключением особо оговоренных случаев, в настоящей главе не проводится никаких различий между системами с присоединенными процессорами и остальными классами многопроцессорных систем.
Параллельная работа нескольких процессоров в режиме ядра по выполнению различных процессов создает ряд проблем, связанных с сохранением целостности данных и решаемых благодаря использованию соответствующих механизмов защиты. Ниже будет показано, почему классический вариант системы UNIX не может быть принят в многопроцессорных системах без внесения необходимых изменений, а также будут рассмотрены два варианта, предназначенные для работы в указанной среде.
Рисунок 12.1. Многопроцессорная конфигурация
12.1 ПРОБЛЕМЫ, СВЯЗАННЫЕ С МНОГОПРОЦЕССОРНЫМИ СИСТЕМАМИ
В главе 2 мы говорили о том, что защита целостности структур данных ядра системы UNIX обеспечивается двумя способами: ядро не может выгрузить один процесс и переключиться на контекст другого, если работа производится в режиме ядра, кроме того, если при выполнении критического участка программы обработчик возникающих прерываний может повредить структуры данных ядра, все возникающие прерывания тщательно маскируются. В многопроцессорной системе, однако, если два и более процессов выполняются одновременно в режиме ядра на разных процессорах, нарушение целостности ядра может произойти даже несмотря на принятие защитных мер, с другой стороны, в однопроцессорной системе вполне достаточных.
struct queue {} *bp, *bp1;
bp1-›forp = bp-›forp;
bp1-›backp = bp;
bp-›forp=bp1;
/* рассмотрите возможность переключения контекста в этом месте */
bp1-›forp-›backp =b p1;
Рисунок 12.2. Включение буфера в список с двойными указателями
В качестве примера рассмотрим фрагмент программы из главы 2 (Рисунок 12.2), в котором новая структура данных (указатель bp1) помещается в список после существующей структуры (указатель bp). Предположим, что этот фрагмент выполняется одновременно двумя процессами на разных ЦП, причем процессор A пытается поместить вслед за структурой bp структуру bpA, а процессор B структуру bpB. По поводу сопоставления быстродействия процессоров не приходится делать никаких предположений: возможен даже наихудший случай, когда процессор B исполняет 4 команды языка Си, прежде чем процессор A исполнит одну. Пусть, например, выполнение программы процессором A приостанавливается в связи с обработкой прерывания. В результате, даже несмотря на блокировку остальных прерываний, целостность данных будет поставлена под угрозу (в главе 2 этот момент уже пояснялся).
Ядро обязано удостовериться в том, что такого рода нарушение не сможет произойти. Если вопрос об опасности возникновения нарушения целостности оставить открытым, как бы редко подобные нарушения ни случались, ядро утратит свою неуязвимость и его поведение станет непредсказуемым. Избежать этого можно тремя способами:
1. Исполнять все критические операции на одном процессоре, опираясь на стандартные методы сохранения целостности данных в однопроцессорной системе;
2. Регламентировать доступ к критическим участкам программы, используя элементы блокирования ресурсов;
3. Устранить конкуренцию за использование структур данных путем соответствующей переделки алгоритмов.
Первые два способа здесь мы рассмотрим подробнее, третьему способу будет посвящено отдельное упражнение.
12.2 ГЛАВНЫЙ И ПОДЧИНЕННЫЙ ПРОЦЕССОРЫ
Систему с двумя процессорами, один из которых — главный (master) — может работать в режиме ядра, а другой — подчиненный (slave) — только в режиме задачи, впервые реализовал на машинах типа VAX 11/780 Гобл (см. [Goble 81]). Эта система, реализованная вначале на двух машинах, получила свое дальнейшее развитие в системах с одним главным и несколькими подчиненными процессорами. Главный процессор несет ответственность за обработку всех обращений к операционной системе и всех прерываний. Подчиненные процессоры ведают выполнением процессов в режиме задачи и информируют главный процессор о всех производимых обращениях к системным функциям.
Выбор процессора, на котором будет выполняться данный процесс, производится в соответствии с алгоритмом диспетчеризации (Рисунок 12.3). В соответствующей записи таблицы процессов появляется новое поле, в которое записывается идентификатор выбранного процессора; предположим для простоты, что он показывает, является ли процессор главным или подчиненным. Когда процесс производит обращение к системной функции, выполняясь на подчиненном процессоре, подчиненное ядро переустанавливает значение поля идентификации процессора таким образом, чтобы оно указывало на главный процессор, и переключает контекст на другие процессы (Рисунок 12.4). Главное ядро запускает на выполнение процесс с наивысшим приоритетом среди тех процессов, которые должны выполняться на главном процессоре. Когда выполнение системной функции завершается, поле идентификации процессора перенастраивается обратно, и процесс вновь возвращается на подчиненный процессор.
Если процессы должны выполняться на главном процессоре, желательно, чтобы главный процессор обрабатывал их как можно скорее и не заставлял их ждать своей очереди чересчур долго. Похожая мотивировка приводится в объяснение выгрузки процесса из памяти в однопроцессорной системе после выхода из системной функции с освобождением соответствующих ресурсов для выполнения более насущных счетных операций. Если в тот момент, когда подчиненный процессор делает запрос на исполнение системной функции, главный процесс выполняется в режиме задачи, его выполнение будет продолжаться до следующего переключения контекста. Главный процессор реагировал бы гораздо быстрее, если бы подчиненный процессор устанавливал при этом глобальный флаг; проверяя установку флага во время обработки очередного прерывания по таймеру, главный процессор произвел бы в итоге переключение контекста максимум через один таймерный тик. С другой стороны, подчиненный процессор мог бы прервать работу главного и заставить его переключить контекст немедленно, но данная возможность требует специальной аппаратной реализации.
алгоритм schedule_process (модифицированный)
входная информация: отсутствует