Вечное Пламя (ЛП)
Вечное Пламя (ЛП) читать книгу онлайн
Обитатели римановской вселенной отправились в путешествие к самому Концу Времен. Корабль поколений «Несравненный», непрестанно ускоряясь, теоретически способен пересечь весь космос в поисках инопланетян, владеющих астроинженерной технологией. Отыскав же их, вернуться как раз вовремя, чтобы спасти родную планету от неминуемого уничтожения.
Один-единственный роковой просчет проектировщиков — и вступают в силу законы мальтузианского выживания. На заводной ракете нет лишнего места!
Космонавты расколоты на две фракции, каждая из которых, не опуская руки, настойчиво ищет выход из тяжелейшего энергетического кризиса. Для этого следует пересмотреть фундаментальные представления о природе материи и энергии — и покончить со многовековыми гендерными канонами...
Greg Egan. The Eternal Flame. 2012
Перевод с английского: http://voyual.info/
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
«Оптические тела», упоминаемые в романе, вероятно, напомнят читателю «оптические решетки», которые в реальном мире применяются исследователями для захвата и изучения атомов при сверхнизких температурах – однако в действительности эти системы существенно отличаются друг от друга. В Ортогональной Вселенной ямы и пики светового электрического поля можно заставить двигаться достаточно медленно, чтобы заряженные частицы оказались заперты в его энергетических ямах и стали двигаться вместе со светом. С помощью комбинации трех световых пучков этому «энергетическому ландшафту» можно придать такую форму, чтобы запертые в ямах частицы были ограничены по всем трем измерениям.
В нашей Вселенной это невозможно: заряженные частицы никогда не смогут угнаться за движущейся световой волной; в условиях же стоячей волны – когда интенсивность света образует в пространстве некую устойчивую картину – электрическое поле продолжает осциллировать во времени – при этом каждая яма превращается в пик, и наоборот, сотни триллионов раз в секунду. Тем не менее, хотя оптическая решетка неспособна поймать запереть заряженные частицы в своем электрическом поле, она может оказывать более тонкие воздействия. Эти воздействия связаны не с направлением электрического поля, а с интенсивностью света, благодаря чему они сохраняют постоянное направление с течением времени и могут использоваться для захвата электрически нейтральных атомов.
Дополнительные материалы к роману можно найти на сайте http://www.gregegan.net.
Приложение 3. Умножение и деление векторов
Путешественники Бесподобной придумали способ умножения и деления четырехмерных векторов, позволяющий построить на их основе полноценную числовую систему, похожую на более знакомые нам вещественные и комплексные числа. В нашей культуре эта система носит название кватернионов и была открыта Уильямом Гамильтоном в 1843 г. Подобно тому, как вещественные числа образуют одномерную прямую, а комплексные числа – двумерную плоскость, кватернионы формируют четырехмерное пространство, что делает их идеальной числовой системой для описания геометрии в четырех измерениях. В нашей Вселенной полноценное использование кватернионов невозможно в силу принципиального отличия между временем и пространством, однако в Ортогональной Вселенной геометрия 4-пространства и арифметика кватернионов органично сочетаются друг с другом.
В том варианте, который применяется жителями Бесподобной, главные направления четырехмерного пространства-времени называются Восток, Север, Верх и Будущее, а соответствующие им противоположные направления – Запад, Юг, Низ и Прошлое. Будущее играет роль единицы: при умножении или делении произвольного вектора на Будущее он не меняется. При возведении в квадрат любого из трех других главных направлений – Восток, Север и Верх – всегда получается Прошлое, или минус единица, поэтому в данной числовой системе существуют три независимых квадратных корня из минус единицы; для сравнения, в системе комплексных чисел такой корень всего один – это i. (Разумеется, что при возведении в квадрат противоположных направлений – Запад, Юг и Низ – также получается Прошлое по аналогии с тем, как в системе комплексных чисел квадрат –i также равен –1, однако эти направления не считаются независимыми квадратными корнями).
Умножение в данной системе не обладает свойством коммутативности: a × b, вообще говоря, не совпадает с b × a.
Каждому ненулевому вектору v соответствует обратный вектор, обозначаемый v-1, и удовлетворяющий следующему соотношению:
v × v-1 = v-1 × v = Будущее
Так, Восток-1 = Запад, Север-1 = Юг, Верх-1 = Низ, а Будущее-1 = Будущее. В первых трех случаях обратный вектор совпадает с противоположным, но в общем случае это неверно.
Векторное частное w / v определяется как результат умножения (справа) на v-1 :
Поскольку умножение не обладает свойством коммутативности, при вычислении обратного вектора или частного двух векторов необходимо внимательно следить за порядком аргументов. Обращение произведения двух векторов меняет их порядок на противоположный:
(v × w)-1 = w-1× v-1
Перемена мест сомножителей гарантирует, что исходные векторы будут взяты в надлежащем порядке и дадут в итоге результат, равный Будущему.
(v × w)-1 × (w-1× v-1) = v × Будущее× v-1 = Будущее
(w-1× v-1)× (v × w)-1 = w-1 × Будущее× w = Будущее
Аналогичным образом порядок меняется и при делении на произведение векторов:
u / (v × w)= u × (v × w)-1 = u × w-1× v-1 = (u / w)/ v
Хотя в таблицах умножения и деления приведены только результаты для четырех главных векторов, эти операции применимы к любым векторам (исключение составляет деление на нулевой вектор). В общем случае произвольный вектор можно представить в виде суммы векторов, кратных четырем главным направлениям:
v = a ∙ Восток + b ∙ Север + c ∙ Верх + d ∙ Будущее
Здесь a, b, c, d – вещественные числа, которые могут быть положительными, отрицательными или равными нулю. Определим теперь еще один вектор w, используя другой набор вещественных чисел A, B, C, D:
w = A ∙ Восток + B ∙ Север + C ∙ Верх + D ∙ Будущее
Для умножения v и w мы можем воспользоваться правилами обычной алгебры, принимая во внимание порядок сомножителей:
v × w =
= (a ∙ Восток + b ∙ Север + c ∙ Верх + d ∙ Будущее)× (A ∙ Восток + B ∙ Север + C ∙ Верх + D ∙ Будущее) =
×
= aA∙ Восток × Восток + aB∙ Восток × Север +
+ aC∙ Восток × Верх + aD∙ Восток × Будущее +
+ bA∙ Север × Восток + bB∙ Север × Север +
+ bC∙ Север × Верх + bD∙ Север × Будущее +
+ cA∙ Верх × Восток + cB∙ Верх × Север +
+ cC∙ Верх × Верх + cD∙ Верх × Будущее +
+ dA∙ Будущее × Восток + dB∙ Будущее × Север +
+ dC∙ Будущее × Верх + dD∙ Будущее × Будущее =
= (aD + bC – cB + dA) ∙ Восток +
+ (–aC + bD + cA + dB) ∙ Север +
+ (aB – bA + cD + dC) ∙ Верх +
+ (–aA — bB – cC + dD) ∙ Будущее
Длину вектора можно определить с помощью четырехмерного аналога теоремы Пифагора. Для обозначения длины вектора v мы будем использовать запись |v|. Через компоненты четырех главных направлений она выражается следующим образом:
|v|2 = a2 + b2 + c2 + d2
При умножении двух векторов длина их произведения совпадает с произведением длин сомножителей:
|v × w| = |v||w|
Для заданного вектора v часто полезным оказывается понятие сопряженного вектора, который мы будем обозначать v* и определять как вектор, компоненты которого по трем пространственным направлениям противоположны соответствующим компонентам v, а временная компонента совпадает с временной компонентой v: