Вечное Пламя (ЛП)
Вечное Пламя (ЛП) читать книгу онлайн
Обитатели римановской вселенной отправились в путешествие к самому Концу Времен. Корабль поколений «Несравненный», непрестанно ускоряясь, теоретически способен пересечь весь космос в поисках инопланетян, владеющих астроинженерной технологией. Отыскав же их, вернуться как раз вовремя, чтобы спасти родную планету от неминуемого уничтожения.
Один-единственный роковой просчет проектировщиков — и вступают в силу законы мальтузианского выживания. На заводной ракете нет лишнего места!
Космонавты расколоты на две фракции, каждая из которых, не опуская руки, настойчиво ищет выход из тяжелейшего энергетического кризиса. Для этого следует пересмотреть фундаментальные представления о природе материи и энергии — и покончить со многовековыми гендерными канонами...
Greg Egan. The Eternal Flame. 2012
Перевод с английского: http://voyual.info/
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
v* = – a ∙ Восток – b ∙ Север – c ∙ Верх + d ∙ Будущее
Умножение исходного вектора на сопряженный к нему дает очень простой результат:
v × v* = (a2 + b2 + c2 + d2) ∙ Будущее = |v|2 ∙ Будущее
Поскольку Будущее в этой числовой системе играет роль единицы, то для вектора v единичной длины сопряженный вектор v* будет совпадать с обратным v-1. Если же длина вектора v отлична от единицы, то обратный вектор также можно выразить через сопряженный, разделив последний на квадрат длины:
v-1 = v* / |v|2
В силу этой тесной взаимосвязи между сопряженным и обратным векторами нетрудно увидеть, что при вычислении сопряженного произведения их порядок нужно поменять на противоположный так же, как и в случае с делением:
(v × w)* = w*× v*
Спроецировав на направление Будущее произведение вектора v и сопряженного вектора w*, можно получить полезную информацию о геометрических свойствах векторов v и w:
Проекция v × w* на Будущее = aA + bB + cC + dD = |v||w| cos (угол между v и w)
Величина, стоящая в правой части первого равенства, и представляющая собой сумму произведений четырех компонент (a, b, c, d) вектора v на соответствующие компоненты (A, B, C, D) вектора w, называется скалярным произведением векторов v и w. Как показывает второе равенство, скалярное произведение зависит только от длина векторов и угла между ними.
Любой поворот четырехмерного пространства можно описать парой фиксированных векторов g и h, причем для осуществления поворота заданный вектор нужно умножить слева на g, а затем поделить справа на h. Иначе говоря, поворот вектора выражается так:
v → g × v / h
Так, поворот, меняющий местами Север и Юг, а также Будущее и Прошлое, оставляя неизменными все векторы, перпендикулярные этой четверке, можно описать с помощью пары g = Юг, h = Север. Как доказать, что эта операция действительно является поворотом? Во-первых, она, как легко убедиться, не меняет длину вектора v, поскольку |g| = |h| = |h-1| = 1 и
|g × v / h| = |g||v||h-1| = |v|
Кроме того, мы можем выяснить, как та же самая операция, примененная к двум векторам, влияет на угол между ними, применив ее к v × w*:
v → g × v / h
w → g × w / h
v × w* → (g × v / h) × (g × w / h)* =
= g × v × h-1 × (g × w × h-1)* =
= g × v × h-1 × h × w* × g-1 =
= g × (v × w*) × g-1
Поскольку g × Будущее/ g = Будущее, то эта операция не меняет проекцию на вектор Будущее. А так как данная проекция определяет угол между v и w – вместе с их длинами, которые, как нам уже известно, остаются неизменными, – то неизменным остается и этот угол.
Все повороты, ограниченные тремя пространственными измерениями, можно описать как частный случай исходной формулы, положив в ней h = g:
v → g × v / g
Например, повороту на 1800 в горизонтальной (Север-Восток) плоскости соответствует g = Верх.
Два других особых случая вращения достигаются при h = Будущее, то есть умножении слева на g:
v → g × v
и g = Будущее, при котором поворот сводится к делению на h:
v → v / h
Обе операции всегда осуществляют поворот сразу в двух ортогональных плоскостях – причем на один и тот же угол. Например, при умножении слева на Восток происходит поворот на 900 как в плоскости Будущее-Восток, так и в плоскости Север-Верх.
Рассмотрим поворот, который описывается величинами g и h, преобразующими векторы в соответствии со стандартной формулой:
v → g × v / h
Существуют еще две разновидности геометрических объектов, которые описываются с помощью кватернионов, но при этом не являются векторами, поскольку при том же самом повороте подчиняются другим правилам преобразования:
l → g × l
r → h × r
Эти любопытные объекты называются «спинорами»: l – «левым», а r – «правым». В нашем мире математика спиноров не так проста, как в случае Ортогональной Вселенной, но обе математические системы, тем не менее, довольно похожи, а спиноры и в той, и в другой Вселенной играют ключевую роль при описании поведения некоторых фундаментальных частиц в процессе поворота.