Перелом (СИ)
Перелом (СИ) читать книгу онлайн
Русские долго запрягают, но быстро едут? Ну так "Поехали!".
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Но к тому моменту мы работали уже по другим технологиям изготовления элементов — вакуумной и физической. Точнее, они обе были и вакуумными, и физическими — поликристаллическая пленка сульфида свинца в обоих случаях получалась осаждением при нагреве в вакууме. Но температуры и дальнейшая технология были разные, поэтому как-то так и сложились такие названия. Сам принцип таких физических методов родился как раз в процессе моих попыток создать биржу проектов, когда я еще бегал по лабораториям сам, пытаясь разрулить возникавшие проблемы силами других специалистов. Осаждением пленок в вакууме мы занялись, естественно, с моей подачи — я тренировал народ для будущих прорывов в микроэлектронике, поэтому с конца сорок первого сутками напролет сначала пара десятков, а к весне сорок второго — уже более трехсот человек только и делали, что тренировались испарять и осаждать разные вещества. Пока — только чтобы набить руку, потренироваться в методах получения пленок и исследовании их свойств. Ну, был и выхлоп — мы стали производить резисторные матрицы для радиоаппаратуры, что уменьшило трудоемкость ее изготовления, массу и размеры, затем пошли конденсаторные матрицы — для регистровой памяти наших первых ЭВМ, еще на лампах. В общем, работали не впустую. И вот, как-то поучаствовав в очередной планерке разработчиков ИК-детекторов, я и спросил:
— Вам ведь нужна поликристаллическая пленка?
— Да.
— А не все-ли равно — как она будет получена?
— Все делают химическим осаждением.
— А если попробовать напылять? В вакууме.
— Можно и попробовать…
Так я и свел две ветки исследований. И результаты этого научного скрещивания стали прорывом в нашей ИК-технике.
"Вакуумная" технология была незамысловатой. Делалась стеклянная колба — сантиметр-два в диаметре и длиной пару-тройку сантиметров, на ее плоский торец наносилось токопроводящее покрытие — тонкий слой золота. К нему припаивался контакт и выводился наружу. Затем внутрь колбы засыпался порошок сернистого свинца, система подсоединялась к вакуумному насосу, воздух откачивался в течение часа-полтутора-двух, и затем порошок сернистого свинца нагревался до шестисот-семисот градусов в вакууме — при этом он возгонялся и оседал на охлаждаемый стеклянный торец — это покрытие и становилось фоточувствительным элементом. Его еще надо было активировать, прогрев в разреженной среде кислорода при температуре в триста-четыреста градусов. Потом наносился второй контакт из золота — внутрь вводился микротигель, из которого золото испарялось и оседало на фоточувствительной пленке, находившейся с внутренней стороны колбы. Затем к этой пленке припаивался второй вывод, колба запаивалась и отсоединялась от вакуумной системы — и - вуаля! — фоточувствительный элемент готов!
Один из десяти в лучшем случае. И еще пара-тройка могла работать какое-то время — от пяти минут до нескольких часов — на них, а особенно на остальных — совсем уж бракованных — все было не слава богу — либо отпаивались контакты, либо контакты не пропаивались, либо кусок золотой пленки с внутренней стороны имел разрывы, либо она отслаивалась, либо осажденная пленка при насыщении кислородом слишком сильно перекристаллизовывалась и изменяла свои свойства, а то и рвала пленку из золота — выхлоп был очень незначительным. Но мы продолжали исследования. В начале весны сорок второго по теме вакуумных фоторезисторов только на их изготовлении трудилось уже более сотни человек — порядка пятнадцати исследовательских групп, и при длительности полного цикла изготовления одной партии из десяти штук в шесть часов они умудрялись изготавливать по четыреста элементов в сутки. При этом они использовали шестьдесят насосов низкого и среднего вакуума, двадцать — высокого и пять — сверхвысокого, около десяти паяльных ламп, сорока нагревателей ну и прочей техники по мелочи. И потом эти элементы препарировало еще более трех сотен лаборантов. Они исследовали вольтамперные характеристики, характеристики чувствительности, скорость деградации при повышенной температуре. Каждый прибор обнюхивался со всех сторон — размер зерна, состояние контактов и напыления, химический состав — все подвергалось тщательному изучению. Причем в каждой партии из десяти штук приборы исследовались через заданные планом эксперимента промежутки времени — часть — сразу после изготовления, часть — через сутки, неделю, месяц — мы пытались понять, как, скажем, длительность выдержки при высокой температуре повлияет на деградацию характеристик прибора. И таких параметров было много — в месяц исследовалось более десяти тысяч элементов — то есть в среднем по одному прибору в сутки на одного лаборанта — как обычно, мы пытались с помощью массовых исследований быстро вывести технологию на приемлемый уровень.
Так, вскоре после начала исследований мы догадались делать на плоской стеклянной стороне не сплошное покрытие, а растр — два набора параллельных дорожек, которые и были контактами фоторезистора. Дело пошло лучше — выход годных элементов сразу подскочил до тридцати процентов. Но проблема их деградации оставалась, и мы над ней бились и до сих пор. Как и над управлением характеристиками фотоэлемента — размер зерен поликристаллической пленки зависел от режима возгонки — температуры, графика и времени нагрева, а от размеров зависела фоточувствительность. Зависела она и от режимов обработки кислородом. И все эти зависимости мы исследовали, прерывая процессы на разных стадиях — начнем напылять пленку, но через некоторое время останавливаем, достаем образец и смотрим — как там растут кристаллы — на чистом стекле, на кварце, на оксиде алюминия, а если предварительно осадить металл, или сульфид, или оксид — чтобы они создали сетку зародышей для будущих кристаллов. В общем, зависимостей было много, и мы все их старались исследовать при разных температурах и времени возгонки, охлаждения, выдержки.
От этих же параметров зависела и скорость деградации элемента — когда его чувствительность упадет на треть, на половину, на две трети — мы начали поставлять в войска калибровочные устройства, с помощью которых специалисты подразделений технического обслуживания или сами бойцы следили за характеристиками ИК-приборов, замеряя значения сигнала от источников тепла с постоянными параметрами. Так что статистику мы вели, войска постоянно получали "свежие" фотоэлементы, а ученые забирали отработавшие — для препарирования и изучения — что же в них такого изменилось. Если в начале работы вакуумных элементов их срок службы составлял от силы несколько дней, то сейчас он возрос уже до семи недель с деградацией в тридцать процентов, а деградация в шестьдесят наступала уже через полгода, причем в последних сериях мы рассчитывали на тридцатипроцентную деградацию уже через семь-восемь месяцев — ученые догадались, что если в вакуумной колбе создать кислородную среду, то она сможет возмещать кислород, уходящий из чувствительного элемента, поэтому его характеристики будут дольше поддерживаться, ну или хотя бы медленнее ухудшаться. Оставалось только выяснить — какая среда будет наиболее подходящей. А учитывая, что и элементы делались с разными техусловиями… кажется мы снова придумали себе работенку.
Так что вакуумная технология пока выигрывала первенство, но и "мокрая" вдруг выстрелила с самой неожиданной стороны — наши исследователи открыли квантовые точки. Ну, кажется, это именно они. Хотя таких "выстрелов вдруг" у нас было немало, чему способствовала стандартизированная методика исследования веществ, которые мы получали в ходе реакций. С каждым полученным веществом делали разные опыты. Его облучали светом разной длины и интенсивности и снимали спектрограмму отраженного света. Его намагничивали с разной силой и измеряли остаточную намагниченность. Его помещали в электрические поля и измеряли размеры, излучения, намагниченность. Его помещали в магнитные поля разной интенсивности и облучали. Направляли пучки ионов и электронов. Просвечивали, нагревали, изгибали, растворяли и сжимали. И меряли, меряли, меряли — излучение, магнитные и электрические поля, коэффициенты преломления, коэффициенты температурного расширения — было более двух десятков параметров, что замеряли после каждого эксперимента. Ну а что? "Студентов" у нас много — пусть руку набивают. Так что открытия были поставлены на поток, фактически, при нашей организации научных исследований они были закономерны.