Развлечения со спичками
Развлечения со спичками читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Другие примеры начального расположения спичек указаны на рис. 6, 7 и 8. Какую спичку и как надо переложить, — ясно из рисунков.
Вероятно, читателям удастся отыскать еще и другие способы решения этой задачи, но едва ли посчастливится им напасть на то совершенно неожиданное решение, которое изображено на рис. 9 и 10.
Первоначальное расположение спичек берется такое, как на рис. 9. Для получения же квадрата верхняя спичка чуть отодвигается вверх (рис. 10): получается крошечный квадратик, "ограниченный 4-мя спичками".
Это оригинальное решение вполне правильно и удовлетворяет условиям задачи: ведь не требовалось, чтобы квадрат получился непременно большой!
Рассмотренные сейчас две задачи дают представление о характере тех головоломок, которые можно извлечь из спичечного коробка. Число задачек этого рода так велико, что лет двадцать тому назад один немецкий автор (Тромгольд) собрал в отдельную книгу свыше 200 самых разнообразных спичечных головоломок. В свое время книжечка эта имелась и в русском переводе (С. Тромгольд. "Игры со спичками". Одесса. 1907). Так как в наше время ее уже, к сожалению, нет в продаже, то позволяю себе привести здесь из нее десятка два задач, по образцу которых читатель, без сомнения, сможет уже и сам составить длинный ряд других. Многие из них легки, но попадаются и очень замысловатые.
Чтобы не лишать читателя удовольствия доискаться решения самостоятельно, победоносно выйдя из хитро расставленных для него затруднений, ответы напечатаны не сразу после задач, а собраны вместе в конце всей главки [3].
Начнем с более легких:
Задача 3-я
а) Переложить 2 спички так, чтобы получилось 7 равных квадратов.
в) Из полученной фигуры вынуть две спички так. чтобы осталось 5 квадратов.
Задача 4-я
Вынуть 8 спичек так, чтобы из оставшихся образовалось 4 равных квадрата (есть 2 решения).
Задача 5-я
Вынуть 4 спички так, чтобы образовалось 5 равных или 5 неравных квадратов.
Задача 6-я
Вынуть (рис. 12) 6 спичек так, чтобы из оставшихся образовалось 3 квадрата.
Задача 7-я
Переложить 5 спичек так, чтобы получилось 2 квадрата.
Задача 8-я
Отобрать 10 спичек так, чтобы осталось 4 равных квадрата (есть 5 решений).
Задача 9-я
Из 12 спичек составить 3 равных четыреугольника и 2 равных треугольника.
Задача 10-я
Отобрать (рис. 13) 6 спичек, так, чтобы осталось 4 равных квадрата
Задача 11-я
Отобрать (рис. 13) 7 спичек так, чтобы осталось 4 равных квадрата.
Задача 12-я
Из 9 целых спичек составить 5 квадратов.
Рассмотрим теперь ряд задач потруднее:
Задача 13-я
Из 18 спичек составить 1 треугольник и 6 четыреугольннков двух размеров, по три каждого размера.
Задача 14-я
Из 10 спичек составлены 3 равных четыреугольника. Одна спичка удаляется, а из остальных 9 спичек требуется составить 3 новых равных четыреугольника.
Задача 15-я
Из 12 спичек составить двенадцатиугольник с прямыми углами.
Задача 16-я
Вынуть 5 спичек так, чтобы осталось 5 треугольников (есть 2 решения).
Задача 17-я
Составить из 18 спичек 6 равных четыреугольников и один треугольник, в два раза меньший по площади.
Задача 18-я
Переложить 6 спичек так, чтобы получилось 6 равных, симметрично расположенных четыреугольников.
Задача 19-я
Как образовать 10-ю спичками 2 правильных пятиугольника и 5 равных треугольников?
Самая замысловатая из задач этого рода, пожалуй, следующая — в своем роде знаменитая — спичечная головоломка:
Задача 20-я
Из 6-ти спичек составить 4 одинаковых треугольника, стороны которых равны одной спичке.
Решения задач 3—20
20. Надо составить пирамиду с треугольным основанием и треугольными же боковыми гранями (рис. 37)
III. Спичечные игры
Эта игра представляет собою не что иное, как приспособление к спичкам общеизвестной игры "нули и крестики". В игре участвуют двое. Выкладывают из спичек фигуру, изображенную на рис. 38. Затем играющие кладут по очереди в одну из 9 клеток этой фигуры по спичке. Один кладет спички головками вверх, другой — головками вниз. Выигравшим считается тот, кто первый закончит прямой или косой (диагональный) ряд из трех своих спичек.
Задача 21-я
Помощью спичек очень удобно разбирать старинные задачи-игры с переправами. Вот один из примеров.
Отец, мать и двое детей подошли к реке. Помощью спичек мы изобразим это так: отец — целая спичка головкой вверх; мать — целая спичка головкой вниз; дети — две половинки спичек; река — два параллельных ряда спичек. У берега стоит лодка (спичечный коробок); лодка может поднять либо только одного взрослого, либо же двоих детей. Как могут псе они переправиться на другой берег?